ZHANG Wenjuan, YANG Fan, CHEN Chaopeng. Mechanical Properties and Hydrogen Diffusion Analysis of Titanium Alloy Microstructure[J]. Development and Application of Materials, 2023, 38(3): 43-50,58.
Citation: ZHANG Wenjuan, YANG Fan, CHEN Chaopeng. Mechanical Properties and Hydrogen Diffusion Analysis of Titanium Alloy Microstructure[J]. Development and Application of Materials, 2023, 38(3): 43-50,58.

Mechanical Properties and Hydrogen Diffusion Analysis of Titanium Alloy Microstructure

More Information
  • Received Date: November 14, 2022
  • Available Online: July 09, 2023
  • In order to study the influence of microstructure heterogeneity of titanium alloy on hydrogen diffusion and mechanical properties, a polycrystalline microstructure model is established. The random grains are generated by the Voronoi diagram subdivision principle, and the influences of the microstructural mechanical properties and hydrogen diffusion on the loading load, grain orientation, grain size and material are analyzed. The results show that the load can promote the hydrogen diffusion and has no effect on the stress concentration. The crystal orientation is the main reason for the uneven stress distribution in the microstructure, and the larger the grain size, the more serious the stress concentration. Under the same load, the stress concentration in the β-titanium alloy is more obvious than that in the α-titanium alloy, and the hydrogen is more easily enriched in the β-titanium alloy.
  • [1]
    付亚荣, 谷胜群, 宋惠梅, 等. 钛合金管材在高含硫天然气开发中的应用现状[J]. 石油机械, 2018, 46(3): 116-124.
    [2]
    陈守东, 卢日环, 孙建, 等. 晶粒尺寸效应对铜极薄带轧制变形机制影响的模拟研究[J]. 中国有色金属学报, 2018, 28(11): 2233-2241.
    [3]
    温吉利, 华丽, 徐宏, 等. 2.25Cr-1Mo钢氢致裂纹扩展行为研究[J]. 腐蚀与防护, 2008, 29(3): 121-124.
    [4]
    郎巧霖. 钛金属氢脆的计算模拟[D]. 青岛: 中国海洋大学, 2010.
    [5]
    NAGAO A, KURAMOTO S, ICHITANI K, et al. Visualization of hydrogen transport in high strength steels affected by stress fields and hydrogen trapping[J]. Scripta Materialia, 2001, 45(10): 1227-1232.
    [6]
    钟彬, 陈义庆, 高鹏, 等. 微观组织和氢陷阱对抗硫管氢扩散系数的影响[J]. 钢铁研究学报, 2020, 32(1): 81-87.
    [7]
    侯双平. 微观组织及晶界结构对管线钢氢致开裂行为的影响[D]. 武汉: 武汉科技大学, 2020.
    [8]
    范宇恒. 不锈钢微观组织结构对其氢脆性能的影响[D]. 合肥: 中国科学技术大学, 2019.
    [9]
    OHAERI E, EDUOK U, SZPUNAR J. Hydrogen related degradation in pipeline steel: a review[J]. International Journal of Hydrogen Energy, 2018, 43(31): 14584-14617.
    [10]
    SOFRONIS P, MCMEEKING R M. Numerical anal-ysis of hydrogen transport near a blunting crack tip[J]. Journal of the Mechanics and Physics of Solids, 1989, 37(3): 317-350.
    [11]
    ZHANG W S, ZHANG Z L, ZHANG X W. Effects of self-induced stress in tubular membranes during hydrogen diffusion[J]. Journal of Alloys and Compounds, 2002, 336(1/2): 170-175.
    [12]
    LEDBETTER H, OGI H, KAI S, et al. Elastic constants of body-centered-cubic titanium monocrystals[J]. Journal of Applied Physics, 2004, 95(9): 4642-4644.
    [13]
    FISHER E S, RENKEN C J. Single-crystal elastic moduli and the hcp → bcc transformation in Ti, Zr, and Hf[J]. Physical Review, 1964, 135(2A): A482-A494.
  • Related Articles

    [1]HUANG Dong, XUE Gang, YANG Chaofei. Research on Influence Factors of Hydrogen Diffusion Coefficient of Pure Iron[J]. Development and Application of Materials, 2020, 35(2): 1-4.
    [2]HE Lei, WANG Yabin, ZHANG Jing, HE Liang. Study on the Difference of Measuring Results of the Diffusible Hydrogen by Carrier Gas Thermal Extraction and Gas Chromatography[J]. Development and Application of Materials, 2019, 34(6): 29-34. DOI: 10.19515/j.cnki.1003-1545.2019.06.006
    [3]YANG Chaofei, XUE Gang, DAI Xuejia, WANG Tao, NIU Jicheng. Research on Hydrogen Diffusion Coefficient Equation for HSLA Steel[J]. Development and Application of Materials, 2018, 33(4): 109-113. DOI: 10.19515/j.cnki.1003-1545.2018.04.020
    [4]CHEN Ai-zhi, YANG Huan, XUE Gang, WANG Tao. Review of Hydrogen Absorption and Diffusion in Steel Welded Joints[J]. Development and Application of Materials, 2015, 30(2): 9-14. DOI: 10.19515/j.cnki.1003-1545.2015.02.003
    [5]YANG Huan, WANG Tao, XUE Gang, LIU Jian. Expression of Diffusible Hydrogen Escape Velocity for 590 MPa Grade High Strength Electrode[J]. Development and Application of Materials, 2015, 30(2): 4-8. DOI: 10.19515/j.cnki.1003-1545.2015.02.002
    [6]XUE Gang, WANG Tao, YANG Huan. Mathematical Model of Diffusible Hydrogen Escape Velocity with Residual Hydrogen Content as Its Argument[J]. Development and Application of Materials, 2015, 30(2): 1-3. DOI: 10.19515/j.cnki.1003-1545.2015.02.001
    [7]WANG Zheng, WANG Yu-hua, LI Lian-jie, CHEN Jue-zhi. Hydrogen diffusion Models between Lattice Interstitial Sites and Hydrogen Trapping Sites in the Steel[J]. Development and Application of Materials, 2009, 24(4): 85-89. DOI: 10.19515/j.cnki.1003-1545.2009.04.020
    [8]YANG Yan-tao, WANG Yu-hua, ZHANG Yong-yang. Impact of Hydrogen on Titanium Alloys[J]. Development and Application of Materials, 2009, 24(1): 69-72. DOI: 10.19515/j.cnki.1003-1545.2009.01.019
    [9]WEI Jinshan, ZHANG Jinghai, ZHANG Tianhong. HD Escape Characteristic of Electrode Deposited Metal[J]. Development and Application of Materials, 2003, 18(1): 20-22. DOI: 10.19515/j.cnki.1003-1545.2003.01.006
    [10]Sun Youshe, Tu Yimin, You Lunchao. Correlation of Alkaline Coated Electrod Coating Components and Deposited Metal Diffusion Hydrogen Contents[J]. Development and Application of Materials, 2002, 17(1): 8-10. DOI: 10.19515/j.cnki.1003-1545.2002.01.003
  • Cited by

    Periodical cited type(1)

    1. 党宁,魏晨,惠城,杨渊雨,杨尚谕,王建军,韩礼红. 激光增材制造钛合金成形件缺陷三维表征与电脉冲修复技术的研究进展. 材料开发与应用. 2024(04): 83-97 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (263) PDF downloads (40) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return