Citation: | ZHANG Guitao, HUANG Xiang, HOU Bingyu, WANG Mingzhi. Determination of Material Properties of Al 2024-T3 Aluminum Alloy Using Nano-indentation Experiment and Interval Optimization[J]. Development and Application of Materials, 2023, 38(6): 41-51. |
[1] |
吴建军, 王明智. 基于压痕测试的材料力学性能识别理论与方法[M]. 西安:西北工业大学出版社, 2021.
|
[2] |
LEE J H, KIM T, LEE H. A study on robust indentation techniques to evaluate elastic-plastic properties of metals[J]. International Journal of Solids and Structures, 2010, 47(5):647-664.
|
[3] |
WU S B, GUAN K S. Evaluation of tensile properties of austenitic stainless steel 316L with linear hardening by modified indentation method[J]. Materials Science and Technology, 2014, 30(12):1404-1409.
|
[4] |
MOUSSA C, HERNOT X, BARTIER O, et al. Evaluation of the tensile properties of a material through spherical indentation:definition of an average representative strain and a confidence domain[J]. Journal of Materials Science, 2014, 49(2):592-603.
|
[5] |
KHAN M K, HAINSWORTH S V, FITZPATRICK M E, et al. A combined experimental and finite element approach for determining mechanical properties of aluminium alloys by nanoindentation[J]. Computational Materials Science, 2010, 49(4):751-760.
|
[6] |
SUN G Y, XU F X, LI G Y, et al. Determination of mechanical properties of the weld line by combining micro-indentation with inverse modeling[J]. Computational Materials Science, 2014, 85:347-362.
|
[7] |
IRACHETA O, BENNETT C J, SUN W. Characterization of material property variation across an inertia friction welded CrMoV steel component using the inverse analysis of nanoindentation data[J]. International Journal of Mechanical Sciences, 2016, 107:253-263.
|
[8] |
HAN G, MARIMUTHU K P, LEE H. Evaluation of thin film material properties using a deep nanoindentation and ANN[J]. Materials & Design, 2022, 221:111000.
|
[9] |
XIA J P, WON C, KIM H, et al. Artificial neural networks for predicting plastic anisotropy of sheet metals based on indentation test[J]. Materials, 2022, 15(5):1714.
|
[10] |
陈怀宁, 胡凯雄, 吴昌忠. 压痕应变法测量残余应力的不确定度分析[J]. 中国测试, 2010, 36(1):24-27.
|
[11] |
闫鹏, 郭伟超, 李淑娟, 等. 压痕轮廓信息在材料本构关系反演测量中的应用[J]. 机械科学与技术, 2019, 38(4):639-645.
|
[12] |
DE BONO D M, LONDON T, BAKER M, et al. A robust inverse analysis method to estimate the local tensile properties of heterogeneous materials from nanoindentation data[J]. International Journal of Mechanical Sciences, 2017, 123:162-176.
|
[13] |
BONATTI C, MOHR D. Neural network model predicting forming limits for Bi-linear strain paths[J]. International Journal of Plasticity, 2021, 137:102886.
|
[14] |
HUANG D M, HE S Q, HE X H, et al. Prediction of wind loads on high-rise building using a BP neural network combined with POD[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 170:1-17.
|
[15] |
PARK S, FONSECA J H, MARIMUTHU K P, et al. Determination of material properties of bulk metallic glass using nanoindentation and artificial neural network[J]. Intermetallics, 2022, 144:107492.
|
[16] |
JEONG K, LEE H, KWON O M, et al. Prediction of uniaxial tensile flow using finite element-based indentation and optimized artificial neural networks[J]. Materials & Design, 2020, 196:109104.
|
[17] |
KIM Y, GU G H, ASGHARI-RAD P, et al. Novel deep learning approach for practical applications of indentation[J]. Materials Today Advances, 2022, 13:100207.
|
[18] |
马济民,李成功,邓炬.中国航空材料手册(第4卷)[M]. 北京:清华大学出版社,2001.
|
[19] |
SESHAGIRI S, KHALIL H K. Output feedback control of nonlinear systems using RBF neural networks[J]. IEEE Transactions on Neural Networks, 2000, 11(1):69-79.
|
[20] |
李卫东, 柳焯, 郭玉红, 等. 基于电力系统运行模式及人工神经网络的潮流并行算法[J]. 电力系统自动化, 1997, 21(5):10-14.
|
[21] |
李晓峰, 徐玖平, 王荫清, 等. BP人工神经网络自适应学习算法的建立及其应用[J]. 系统工程理论与实践, 2004, 24(5):1-8.
|
[22] |
刘平, 梁逸曾, 张林, 等. 人工神经网络用于化学数据解析的研究(Ⅰ):逼近规律与过拟合[J]. 高等学校化学学报, 1996, 17(6):861-865.
|
[23] |
郭井宽. 基于Dropout法优化的BP神经网络地铁列车塞拉门故障检测[J]. 城市轨道交通研究, 2022, 25(12):39-45.
|
[24] |
范勇, 裴勇, 杨广栋, 等. 基于改进PSO-BP神经网络的爆破振动速度峰值预测[J]. 振动与冲击, 2022, 41(16):194-203.
|
[25] |
ABAQUS. Analysis user's manual,Version 6.9[M]. Paris:ABAQUS, 2009.
|
[26] |
刘鸿文. 材料力学-Ⅱ[M]. 5版. 北京:高等教育出版社, 2011.
|
[27] |
PHAM T H, KIM J J, KIM S E. Estimating constitutive equation of structural steel using indentation[J]. International Journal of Mechanical Sciences, 2015, 90:151-161.
|
1. |
王岩,刘杰,方茂久,臧宗瑶,李慧,甄庭,孙耀星. 软模板法制备聚苯胺干凝胶及在水性防腐涂料中的应用. 北华大学学报(自然科学版). 2024(01): 117-121 .
![]() | |
2. |
齐昱,白佳乐,吴鹏,王雨,张琰图,李雪礼. 功能性复合防腐涂层研究进展. 功能材料. 2024(04): 4051-4061+4071 .
![]() | |
3. |
周豪. 消防管道用的沥青防腐蚀涂层制备及性能试验. 化学工程师. 2023(02): 89-93 .
![]() | |
4. |
李翊,刘杰,刘长沙,邹阳,蒋俊,孙敬庭. 基于阴极电位保护的覆土式储罐化学稳定性与耐腐蚀试验. 粘接. 2023(05): 126-129 .
![]() | |
5. |
严超群,呼加瑞,张俊娟,胡平. 公路隧道用防腐涂料制备及性能评价. 合成材料老化与应用. 2023(03): 88-91 .
![]() | |
6. |
张绪,彭浩,付弯弯,孙子豪,刘明晓,谭晓明. PC构件外露钢筋水性防腐涂料的开发与应用. 山东商业职业技术学院学报. 2023(04): 110-116 .
![]() | |
7. |
黄从树,李永胜,贺群,王晶晶,卜伟锋. 多齿螯合酰腙配体的合成及其防腐性能. 涂料工业. 2023(10): 61-68 .
![]() | |
8. |
张晓成,陈宇凡,魏木孟,姚敬华,孙禹,杨洋,范国栋,杨博均,王华清,史治国. 动车用不同品牌溶剂型和水性涂料混搭对涂料配套性能的影响. 涂层与防护. 2023(10): 32-38+43 .
![]() | |
9. |
张晓成,陈宇凡,魏木孟,姚敬华,王浩,范国栋,杨博均,王华清. 基于灰色系统理论的动车组铝合金横梁涂层在实验室盐雾环境下的寿命预测研究. 材料开发与应用. 2023(06): 22-31+51 .
![]() | |
10. |
李姣,郭莉皎. 冶炼化工设备金属材料腐蚀原因及防护措施. 造纸装备及材料. 2022(03): 94-96 .
![]() | |
11. |
俞于怀,廖木荣,黄科润,廖艳芳,蒋翠翠. 硅包覆三聚磷酸铝的制备及性能研究. 化工技术与开发. 2022(10): 32-34+51 .
![]() |