ZHANG Hongning, LU Tianni, LIU Chunzhong, LI Na, HUANG Zhenwei, ZHANG Qianxi, ZOU Binglin. Study on Wave-absorbing Properties of Layer-by-layer Distributed Composite Thermal Insulation Materials with Different Contents of SmFeN/YSZ[J]. Development and Application of Materials, 2024, 39(1): 56-65,73.
Citation: ZHANG Hongning, LU Tianni, LIU Chunzhong, LI Na, HUANG Zhenwei, ZHANG Qianxi, ZOU Binglin. Study on Wave-absorbing Properties of Layer-by-layer Distributed Composite Thermal Insulation Materials with Different Contents of SmFeN/YSZ[J]. Development and Application of Materials, 2024, 39(1): 56-65,73.

Study on Wave-absorbing Properties of Layer-by-layer Distributed Composite Thermal Insulation Materials with Different Contents of SmFeN/YSZ

More Information
  • Received Date: November 03, 2023
  • The rapid development of radar detection technology has put forward higher requirements for the wave-absorbing properties of thermal components such as engines. The commonly used thermal insulation material yttria-stabilized zirconia oxygen (YSZ) does not have wave-absorbing property, and it is currently used to add wave-absorbing agent in the thermal insulation material to realize its stealth from radar. Based on that, we adopt the additive manufacturing technology to lamellarly distribute the lasamarium iron nitrogen (SmFeN) wave-absorbing agent with different mass ratios and heat-insulating coating material YSZ composites to construct a SmFeN/YSZ composite interface model, whose phase interface perpendicular to the incident electromagnetic wave. The results show that when the SmFeN metal particles and YSZ powders are hierarchically stacked in different ratios, the YSZ/SmFeN heterogeneous interfaces can improve the microwave absorption properties. When the mass ratio of YSZ to SmFeN is 1∶1, the minimum reflection loss value is -54.498 dB and the maximum effective absorption bandwidth is 2.5 GHz.
  • [1]
    刘顺华, 刘军民, 董星龙,等. 电磁波屏蔽及吸波材料[M]. 北京: 化学工业出版社, 2007.
    [2]
    WANG X Y, LIAO J, DU R X, et al. Achieving super-broad effective absorption bandwidth with low filler loading for graphene aerogels/raspberry-like CoFe2O4 clusters by N doping[J]. Journal of Colloid and Interface Science, 2021, 590: 186-198.
    [3]
    ZIAEE M, CRANE N B. Binder jetting: a review of process, materials, and methods[J]. Additive Manufacturing, 2019, 28: 781-801.
    [4]
    INOUE A, TAKEUCHI A. Recent development and application products of bulk glassy alloys[J]. Acta Materialia, 2011, 59(6): 2243-2267.
    [5]
    李伟, 郭家瑞, 左思源, 等. SmFeN稀土永磁材料的研究进展[J]. 材料科学, 2021(5): 649-664.
    [6]
    LI Y, GAO D, GUO Y F, et al. A temperature-responsive composite for adaptive microwave absorption[J]. Chemical Engineering Journal, 2022, 427: 131746.
    [7]
    QIAN X A, ZHANG Y H, WU Z C, et al. Multi-path electron transfer in 1D double-shelled Sn@Mo2C/C tubes with enhanced dielectric loss for boosting microwave absorption performance[J]. Small, 2021, 17(30): e2100283.
    [8]
    LI Z J, LIN H, WU S Y, et al. Rice husk derived porous carbon embedded with Co3Fe7 nanoparticles towards microwave absorption[J]. Composites Science and Technology, 2022, 229: 109673.
    [9]
    XU D W, XIONG X H, CHEN P, et al. Superior co-rrosionresistant 3D porous magnetic graphene foa-mferrite nanocomposite with tunable electromagnetic wave absorption properties[J]. Journal of Magnetism and Magnetic Materials, 2019, 469: 428-436.
    [10]
    WANG B C, ZHANG C, MU C P, et al. Enhanced electromagnetic wave absorption properties of NiCo2 nanoparticles interspersed with carbon nanotubes[J]. Journal of Magnetism and Magnetic Materials, 2019, 471: 185-191.
    [11]
    JIANG X Y, WAN W H, WANG B, et al. Enhanced anti-corrosion and microwave absorption performance with carbonyl iron modified by organic fluorinated chemicals[J]. Applied Surface Science, 2022, 572: 151320.
    [12]
    LIU J L, ZHANG P, ZHANG X K, et al. Synthesis and microwave absorbing properties of La-doped Sr-hexaferrite nanopowders via sol-gel auto-combustion method[J]. Rare Metals, 2017, 36(9): 704-710.
    [13]
    YANG W Y, ZHANG Y F, QIAO G Y, et al. Tuna-ble magnetic and microwave absorption properties of Sm1.5Y0.5Fe17-xSix and their composites[J]. Acta Materialia, 2018, 145: 331-336.
    [14]
    MEENAR S, BHATTACHRYA S, CHATTERJEE R. Complex permittivity, permeability and microwave absorbing studies of (Co2-xMnx) U-type hexaferrite for X-band (8.2-12.4 GHz) frequencies[J]. MaterialsScienceand Engineering: B, 2010, 171(1-3): 133-138.
  • Related Articles

    [1]CHEN Li-yang, LIU Jun, QI Feng-hua, HU Jing-yuan, ZHANG Yi. Effect of SiO2 on Wave Absorbing Performance of CI/CB Coating[J]. Development and Application of Materials, 2013, 28(5): 50-54. DOI: 10.19515/j.cnki.1003-1545.2013.05.013
    [2]SHI Zhangming, ZHANG Jiaoqiang, JI Tiezheng, YI Na. Research Trend and Application Prospect of Wave Absorbing Polyaniline[J]. Development and Application of Materials, 2013, 28(1): 82-89. DOI: 10.19515/j.cnki.1003-1545.2013.01.018
    [3]ZHANG Xue-liang, XU Peng-fei, ZHANG Jiao-xia, WANG Xiang. An Overview of Absorber Nanomaterials[J]. Development and Application of Materials, 2012, 27(5): 75-80. DOI: 10.19515/j.cnki.1003-1545.2012.05.020
    [4]LI Song, YU Hai-tao, ZHENG Tian-shui. An Technique for Thickness Nondestructive Measurement of Radar Absorbing Coatings[J]. Development and Application of Materials, 2012, 27(5): 42-45. DOI: 10.19515/j.cnki.1003-1545.2012.05.012
    [5]ZHANG Yin-ling, HUANG Ying, WU Hai-wei. The Electromagnetic Interference Shielding and Wave-absorbing Properties of Polyaniline Composite Films[J]. Development and Application of Materials, 2011, 26(6): 74-80,85. DOI: 10.19515/j.cnki.1003-1545.2011.06.017
    [6]WU Liang, YU Hai-tao, SONG Lie-pu. An On-site Measurement Technique of Radar Absorbing Coatings[J]. Development and Application of Materials, 2011, 26(1): 15-18. DOI: 10.19515/j.cnki.1003-1545.2011.01.005
    [7]CHEN Jian-jian, HAO Wan-jun. Optimization Design of λ/4-Type Dielectric Absorber[J]. Development and Application of Materials, 2009, 24(6): 84-88. DOI: 10.19515/j.cnki.1003-1545.2009.06.021
    [8]WANG Cui-ping, FANG Qing-qing, LI Min-quan, YIN Ping. Studies on Microwave Absorbing Properties of Multi-layer Materials Based on Reticulated Fabrics[J]. Development and Application of Materials, 2008, 23(4): 5-7,36. DOI: 10.19515/j.cnki.1003-1545.2008.04.002
    [9]ZHANG Jian, WANG Li, HU Li-chu, CENG Guo-xun, ZHANG Hai-yan. Progress in Developments of Ferrite Electromagnetic Wave Absorbing Materials[J]. Development and Application of Materials, 2006, 21(5): 33-37. DOI: 10.19515/j.cnki.1003-1545.2006.05.013
    [10]CUI Xiao-dong, LI Zhang-mao, LIU Shun-hua. Research on Absorbing Properties of Double-layer Radar Wave Absorbing Materials[J]. Development and Application of Materials, 2006, 21(4): 8-10,15. DOI: 10.19515/j.cnki.1003-1545.2006.04.003

Catalog

    Article Metrics

    Article views (154) PDF downloads (33) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return