Volume 38 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
QIU Dianqiang, SU Xuanbo, WANG Zhe, WU Xiaoyu, XIE Shufeng. Research Progress on Application of Surface Protection Technology in Maintenance of Warships[J]. Development and Application of Materials, 2023, 38(2): 91-96,108.
Citation: QIU Dianqiang, SU Xuanbo, WANG Zhe, WU Xiaoyu, XIE Shufeng. Research Progress on Application of Surface Protection Technology in Maintenance of Warships[J]. Development and Application of Materials, 2023, 38(2): 91-96,108.

Research Progress on Application of Surface Protection Technology in Maintenance of Warships

  • Received Date: 2022-10-19
    Available Online: 2023-05-06
  • Pneumatic, hydraulic devices, various valves and other motion components are widely used in almost all marine equipment, such as military and civilian ships, submarines, offshore platform. Sea water itself is a strong corrosive medium. The waves, tides and currents generate low-frequency reciprocating stress and impact on the metal components. In addition, marine microorganisms, adherent organisms and their metabolites all directly or indirectly accelerate the corrosion process. Compared with the land environment, the service life of the motion components in the marine environment is significantly reduced, which seriously endangers the service safety of marine equipment. Therefore, it is necessary to repair or replace the failed parts and protective coatings when the ship is regularly maintained. The economic, green and convenient surface protection technology has attracted much attention in shipyards. Here is introduced the application of surface protection technologies such as thermal spraying, laser cladding and chemical conversion in the field of ship maintenance at home and abroad in recent years, and put for ward several problems that need to be solved urgently in ship maintenance.

     

  • loading
  • [1]
    赵华星, 孙晓峰, 宋巍, 等. 微弧氧化技术在铝合金腐蚀防护中的应用研究与发展[J]. 材料导报, 2021, 35(21):21236-21242.
    [2]
    李永清, 朱锡, 堵峰. 新材料在船舶绿色维修领域的应用研究[J]. 材料开发与应用, 2011, 26(3):87-91.
    [3]
    YINS, CAVALIERE P, ALDWELL B, et al. Cold s-pray additive manufacturing and repair:Fundamen-tals and applications[J]. Additive Manufacturing, 2018, 21:628-650.
    [4]
    许康威, 雒晓涛, 武笑宇, 等. 冷喷涂技术研究进展及其在舰船领域的应用[J]. 材料保护, 2022, 55(1):86-94.
    [5]
    WIDENER C A, JOHNSON K, KLUS K. Field application of cold spray for repairs in the navy and industry[C]//International Thermal Spray Conference 2019:Proceedings from the Interna-tional Thermal Spray Conference. Yokohama:ASM International, 2019:406-412.
    [6]
    VILLAFUERTE J. Current and future applications of cold spray technology[J]. Metal Finishing, 2010, 108(1):37-39.
    [7]
    CHAMPAGNE V K. The repair of magnesium rotorc-raft components by cold spray[J]. Journal of Failure Analysis andPrevention, 2008, 8(2):164-175.
    [8]
    雒晓涛, 谢天, 李长久, 等. 冷喷涂金属的组织与性能调控[J]. 中国表面工程, 2020, 33(4):68-81.
    [9]
    JOHNU C.Navy mantech project book[M]. Washington:Office of Naval Research, 2018.
    [10]
    陈正涵,孙晓峰, 史玉鹏, 等. 冷喷涂技术在铜质螺旋桨维修中的应用研究[J]. 表面工程与再制造, 2016, 16(3):20-24.
    [11]
    王海军. 热喷涂实用技术[M]. 北京:国防工业出版社, 2006.
    [12]
    苏新勇, 刘基凯, 杨秀红. 某型舰辅汽轮机转子汽封轴颈磨损改性修复及其摩擦磨损性能研究[C]//第十二次全国机械维修学术会议.黄山:中国机械工程学会, 2011.
    [13]
    汪瑞军, 徐林, 张天剑, 等. DZ9000E型移动式超音速火焰喷涂系统的研制[J]. 焊接, 2006(11):48-51.
    [14]
    邓超, 高艳男, 宫伟兴, 等. 汽轮机叶片防水蚀超音速现场喷涂技术研究及应用[J].汽轮机技术, 2021, 63(5):390-392.
    [15]
    刘宇. 铝基复合防滑涂层制备及性能研究[D]. 济南:山东建筑大学, 2020.
    [16]
    王喜川. 高速电弧喷涂在船舶尾轴修复中的应用[J].科技展望, 2016, 26(8):133.
    [17]
    刘谦. 热喷涂修复技术[J].设备管理与维修, 2022, 44(9):36-39.
    [18]
    张士陶, 杜旭, 李文戈, 等. 等离子喷涂FeCoCrNiMo高熵合金涂层高温氧化行为的研究[J]. 表面技术, 2022, 51(5):90-98.
    [19]
    武创,郗雨林, 王国阳. Al2O3-13%(w)TiO2涂层等离子喷涂粒子状态的研究[J]. 材料开发与应用, 2012, 27(1):47-50.
    [20]
    石绪忠, 武笑宇, 许康威, 等. 等离子喷涂纳米氧化铝钛粉体粒子状态研究[J].材料开发与应用, 2016, 31(6):70-74.
    [21]
    石绪忠, 许康威, 武笑宇. 等离子喷涂纳米氧化铝钛涂层机械性能研究[J].表面技术, 2018, 47(4):96-101.
    [22]
    WANG Y, JIANG S, WANG M D, et al. Abrasive wear characteristics of plasma sprayed nanostructured alumina/titaniacoatings[J]. Wear, 2000, 237(2):176-185.
    [23]
    赵万新, 周正, 黄杰, 等. FeCrNiMo激光熔覆层组织与摩擦磨损行为[J]. 金属学报, 2021, 57(10):1291-1298.
    [24]
    TORIMS T. Laser cladding device for in siturepairs of marine crankshafts[J]. Advanced Materials Research, 2013, 712-715:709-714.
    [25]
    ROTTWINKEL B, NÖLKE C, KAIERLE S, et al. Crack repair of single crystal turbine blades using laser cladding technology[J]. Procedia CIRP, 2014, 22:263-267.
    [26]
    LIN C M. Parameter optimization of laser cladding process and resulting microstructure for the repair of tenon on steam turbine blade[J]. Vacuum, 2015, 115:117-123.
    [27]
    COTTAM R, BRANDT M. Laser surface treatment to improve the surface corrosion properties of nickel-aluminum bronze[M]//Laser Surface Engineering. Amsterdam:Elsevier, 2015:469-481.
    [28]
    倪晓杰, 开佳伟, 尹莉, 等. 船舶维修与再制造用Mo2NiB2基金属陶瓷及涂层的制备和研究现状[J]. 机械工程材料, 2021, 45(5):8-14.
    [29]
    SMOLEN' SKA H, ȽABANOWSKI J, KON' CZEWICZ W. Regeneration of marine engine valves using laser surfacing[J]. Welding International, 2016, 30(2):103-106.
    [30]
    RIQUELME A, DOLORES ESCALERA-RODRÍGU-EZ M,RODRIGO P, et al. Laser cladding of in situ Al-AlN composite on light alloys substrate[J]. Key Engineering Materials, 2016, 724:66-70.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (85) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return