Citation: | LI Longteng, WANG Yang, LIU Xibo, YANG Xuedong. High Temperature Creep Properties and Microstructure of Ti-Al-Zr-Mo-Nb-Sn-Si Cast Titanium Alloy[J]. Development and Application of Materials, 2021, 36(4): 9-13. |
[1] |
许国栋,王桂生,莫畏.钛材生产、加工与应用500问[M].北京:化学工业出版社,2011.
|
[2] |
莫畏.钛[M].北京:冶金工业出版社,2008.
|
[3] |
朱知寿.我国航空用钛合金技术研究现状及发展[J].航空材料学报,2014,34(4):44-50.
|
[4] |
蔡建明,曹春晓.新一代600℃高温钛合金材料的合金设计及应用展望[J].航空材料学报,2014,34(4):27-36.
|
[5] |
王清江,刘建荣,杨锐.高温钛合金的现状与前景[J].航空材料学报,2014,34(4):1-26.
|
[6] |
刘莹莹,陈子勇,金头男,等.600℃高温钛合金发展现状与展望[J].材料导报,2018,32(11):1863-1869.
|
[7] |
PRASAD Y V R K,SESHACHARYULU T.Modelling of hot deformation for microstructural control[J].International Materials Reviews,1998,43(6):243-258.
|
[8] |
黄永江,蒋香草,沈军.Ti-Al-Sn-Zr-W-Si高温钛合金的蠕变性能[J].材料科学与工艺,2013,21(4):117-122.
|
[9] |
张振祺,罗国珍,洪权,等.Ti600合金的性能与显微组织的研究[J].航空材料学报,1999,19(4):6-10.
|
[10] |
张振祺,洪权,杨冠军,等.Ti600高温钛合金蠕变前后的组织变化[J].材料工程,2000,28(10):18-21.
|
[11] |
王占学.塑性加工金属学[M].北京:冶金工业出版社,1991.
|
[12] |
胡青苗.合金化对钛合金力学性能影响的第一原理研究[D].中国科学院金属研究所,2001.
|
[13] |
辛社伟,洪权,卢亚锋,等.Ti600高温钛合金中析出物与蠕变性能的关系[J].中国有色金属学报,2010,20(11):2142-2147.
|
[1] | ZHANG Yajun, ZHANG Xinyao, ZHANG Yunhao. Pertinence of Material Constants in Paris Model for Fatigue Crack Propagation Rate of Metallic Materials[J]. Development and Application of Materials, 2021, 36(4): 1-8. |
[2] | ZHANG Yajun, ZHANG Xinyao, ZHANG Yunhao. Analysis on Application of Different Models for Fatigue Crack Propagation Rate of Metallic Materials[J]. Development and Application of Materials, 2021, 36(2): 88-92. |
[3] | GAO Yuhao, ZHAO Yang, CHENG Yingjin. Study on Analysis Method of da/dN-ΔK Curves Based on Probability Statistics Theory[J]. Development and Application of Materials, 2019, 34(6): 21-28. DOI: 10.19515/j.cnki.1003-1545.2019.06.005 |
[4] | FEI Qiqi, WANG Haoxuan, XIA Min, GUO Lin, ZHANG Tianhui. Effect of Loading Method on Fatigue Crack Propagation in ADB610 Steel[J]. Development and Application of Materials, 2019, 34(3): 108-112. DOI: 10.19515/j.cnki.1003-1545.2019.03.019 |
[5] | ZHANG Ya-jun, ZHANG Li-juan. Influence of Residual Strain to Surface Crack Propagation Rate[J]. Development and Application of Materials, 2012, 27(5): 63-66. DOI: 10.19515/j.cnki.1003-1545.2012.05.017 |
[6] | YANG Guang, XUE Gang, WANG Ren-fu, GONG Xu-hui. The Calculation of Plastic Component of CTOD Inconsideration of Crack Extension[J]. Development and Application of Materials, 2012, 27(2): 77-79. DOI: 10.19515/j.cnki.1003-1545.2012.02.018 |
[7] | HAN Feng, ZHANG Ya-jun, ZHANG Li-juan, GAO Ling-qing. Test Study on Low Cycle Fatigue Surface Crack Propagation Rate for Pressure Vessel Steel[J]. Development and Application of Materials, 2011, 26(4): 56-59,89. DOI: 10.19515/j.cnki.1003-1545.2011.04.012 |
[8] | YAO Hong-ying, LIU Xiang-ru. Model of Deformation Rolling Resistance of Steel 195 for Lower Temperature Rolling[J]. Development and Application of Materials, 2009, 24(1): 36-38. DOI: 10.19515/j.cnki.1003-1545.2009.01.011 |
[9] | Qian Weiping, Li Gang, Ma Jianpo. Fracture Resistance of 14MnNbq Steel and Its Weldment[J]. Development and Application of Materials, 2000, 15(3): 33-36. DOI: 10.19515/j.cnki.1003-1545.2000.03.012 |
[10] | Yuan Jingsong. Approximate Calculation of Crack Propagation Rate of Metal Corrosion Fatigue[J]. Development and Application of Materials, 2000, 15(2): 26-29. DOI: 10.19515/j.cnki.1003-1545.2000.02.007 |