YE Mengyuan, LI Junchen, QUAN Wei, LI Shanglin, DU Xiaoping. Effect of Deformation Temperature on Low∑CSL Grain Boundary Content of 06Cr23Ni13 Stainless Steel[J]. Development and Application of Materials, 2024, 39(2): 37-43.
Citation: YE Mengyuan, LI Junchen, QUAN Wei, LI Shanglin, DU Xiaoping. Effect of Deformation Temperature on Low∑CSL Grain Boundary Content of 06Cr23Ni13 Stainless Steel[J]. Development and Application of Materials, 2024, 39(2): 37-43.

Effect of Deformation Temperature on Low∑CSL Grain Boundary Content of 06Cr23Ni13 Stainless Steel

More Information
  • Received Date: July 01, 2023
  • Available Online: May 08, 2024
  • The hot deformation behavior of the 06Cr23Ni13 stainless steel at different deformation temperatures and strain rates of 0.01 s-1 is studied by Gleeble-3500 instrument, and the effect of deformation temperature on grain boundary content of low coincidence lattice (CSL) is investigated. The results show that the recrystallization degree of the 06Cr23Ni13 stainless steel increases with the increase of deformation temperature. When the deformation temperature is 1 150 ℃, the recrystallization degree of microstructure is the highest, and the austenitic grain is equiaxed. According to the statistics of special grain boundaries of the 06Cr23Ni13 stainless steel under different deformation temperatureby Channel 5 software, the content of the low ∑CSL grain boundaries increases firstly and then decrease with the increase of the dynamic recrystallization degree during the hot deformation process, which reaches its maximum at 1 150 ℃. The low ∑CSL grain boundaries of the 06Cr23Ni13 stainless steel are mainly composed of ∑3, ∑9 and ∑27 grain boundaries.
  • [1]
    董晓强, 李钊. 304连续油管在油井条件下的失效分析[J]. 热加工工艺, 2015, 44(10):239-240.
    [2]
    LIN X D, PENG Q J, HAN E H, et al. Deformation and cracking behaviors of proton-irradiated 308L stainless steel weld metal strained in simulated PWR primary water[J]. 材料科学技术(英文版), 2022, 38(25):36-52.
    [3]
    王伟聪, 杜华云, 侯利锋, 等. 新型奥氏体耐热不锈钢C-HRA-5的热变形行为[J]. 钢铁研究学报, 2022, 34(5):496-503.
    [4]
    WANG L, CHEN C, WANG Z Y, et al. Effect of hot deformation parameters on dynamic recrystallisation mechanisms of super austenitic stainless steel[J]. Materials Science and Technology, 2022, 38(2):78-89.
    [5]
    BRANDON D G. The structure of high-angle grain bo-undaries[J]. Acta Metallurgica, 1966, 14(11):1479-1484.
    [6]
    PENG W W, ZENG W D, WANG Q J, et al. Characterization of high-temperature deformation behavior of as-cast Ti60 titanium alloy using processing map[J]. Materials Science and Engineering:A, 2013, 571:116-122.
    [7]
    HU C L, XIA S, LI H, et al. Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control[J]. Corrosion Science, 2011, 53(5):1880-1886.
    [8]
    CHONG P H, LIU Z, WANG X Y, et al. Pitting corrosion behaviour of large area laser surface treated 304L stainless-steel[J]. Thin Solid Films, 2004, 453-454:388-393.
    [9]
    王方军, 刘璇, 刘应龙, 等. 固溶温度对冷轧态690合金组织及晶界分布特征的影响[J]. 金属热处理, 2020, 45(3):151-157.
    [10]
    周向东, 高鑫, 浦海涌, 等. 晶界工程对面心立方金属材料性能的影响[J]. 世界有色金属, 2020(4):168-169.
    [11]
    师瑀, 张莹莹, 刘峰, 等. 面心立方金属晶界工程技术的研究进展[J]. 热加工工艺, 2020, 49(16):32-36.
    [12]
    杨兆, 陈兴润, 王珂, 等. 309L奥氏体不锈钢板热轧边裂缺陷成因分析和工艺改进[J]. 特殊钢, 2021, 42(4):56-59.
    [13]
    孟重重, 杨小容, 张华煜, 等. 309SMOD奥氏体耐热不锈钢的高温氧化行为[J]. 金属热处理, 2021, 46(11):24-28.
    [14]
    陈兴润, 潘吉祥, 蒋随强. 固溶处理对309S不锈钢组织和力学性能的影响[J]. 特种铸造及有色合金, 2016, 36(7):684-687.
    [15]
    LICHTENFELD J A, VAN TYNE C J, MATAYA M C. Effect of strain rate on stress-strain behavior of alloy 309 and 304L austenitic stainless steel[J]. Metallurgical and Materials Transactions A, 2006, 37(1):147-161.
    [16]
    SAKAGUCHI N, OHGUCHI Y, SHIBAYAMA T, et al. Surface cracking on ∑3, ∑9 CSL and random grain boundaries in helium implanted 316L austenitic stainless steel[J]. Journal of Nuclear Materials, 2013, 432(1-3):23-27.
    [17]
    卓秀秀, 徐桂芳, 袁圆, 等. 0Cr17Mn17Mo3NiN奥氏体不锈钢的热变形行为及热加工图[J]. 机械工程学报, 2017, 53(22):74-80.
  • Related Articles

    [1]ZHANG Wenjuan, YANG Fan, CHEN Chaopeng. Mechanical Properties and Hydrogen Diffusion Analysis of Titanium Alloy Microstructure[J]. Development and Application of Materials, 2023, 38(3): 43-50,58.
    [2]WANG Xiaolian, KANG Tianyou, WANG Dun. Effect of Sodium Silicate on Performance of Alkaline Low Hydrogen Electrode[J]. Development and Application of Materials, 2021, 36(6): 67-70.
    [3]HUANG Dong, XUE Gang, YANG Chaofei. Research on Influence Factors of Hydrogen Diffusion Coefficient of Pure Iron[J]. Development and Application of Materials, 2020, 35(2): 1-4.
    [4]HE Lei, WANG Yabin, ZHANG Jing, HE Liang. Study on the Difference of Measuring Results of the Diffusible Hydrogen by Carrier Gas Thermal Extraction and Gas Chromatography[J]. Development and Application of Materials, 2019, 34(6): 29-34. DOI: 10.19515/j.cnki.1003-1545.2019.06.006
    [5]YANG Chaofei, XUE Gang, DAI Xuejia, WANG Tao, NIU Jicheng. Research on Hydrogen Diffusion Coefficient Equation for HSLA Steel[J]. Development and Application of Materials, 2018, 33(4): 109-113. DOI: 10.19515/j.cnki.1003-1545.2018.04.020
    [6]CHEN Ai-zhi, YANG Huan, XUE Gang, WANG Tao. Review of Hydrogen Absorption and Diffusion in Steel Welded Joints[J]. Development and Application of Materials, 2015, 30(2): 9-14. DOI: 10.19515/j.cnki.1003-1545.2015.02.003
    [7]YANG Huan, WANG Tao, XUE Gang, LIU Jian. Expression of Diffusible Hydrogen Escape Velocity for 590 MPa Grade High Strength Electrode[J]. Development and Application of Materials, 2015, 30(2): 4-8. DOI: 10.19515/j.cnki.1003-1545.2015.02.002
    [8]XUE Gang, WANG Tao, YANG Huan. Mathematical Model of Diffusible Hydrogen Escape Velocity with Residual Hydrogen Content as Its Argument[J]. Development and Application of Materials, 2015, 30(2): 1-3. DOI: 10.19515/j.cnki.1003-1545.2015.02.001
    [9]WANG Zheng, WANG Yu-hua, LI Lian-jie, CHEN Jue-zhi. Hydrogen diffusion Models between Lattice Interstitial Sites and Hydrogen Trapping Sites in the Steel[J]. Development and Application of Materials, 2009, 24(4): 85-89. DOI: 10.19515/j.cnki.1003-1545.2009.04.020
    [10]WEI Jinshan, ZHANG Jinghai, ZHANG Tianhong. HD Escape Characteristic of Electrode Deposited Metal[J]. Development and Application of Materials, 2003, 18(1): 20-22. DOI: 10.19515/j.cnki.1003-1545.2003.01.006

Catalog

    Article Metrics

    Article views (653) PDF downloads (25) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return