Citation: | HUANG Dong, WEI Mengfei, ZHANG Yuxiang, JIANG Ying, CHENG Bin. High Temperature Constitutive Equation Considering Strain Compensation of 12CrNi5MoV Forged Steel[J]. Development and Application of Materials, 2024, 39(2): 81-88. |
[1] |
贺小毛. 1Cr12Ni3Mo2VN核电特大型叶片省力成形方法及组织控制[D]. 北京:机械科学研究总院, 2017.
|
[2] |
叶丽燕. 大型核电转子用25Cr2Ni4MoV钢锻造及热处理过程组织演化研究[D]. 北京:机械科学研究总院, 2020.
|
[3] |
仝智远, 宫旭辉. 10CrNi8MoV钢的拉伸塑性应变物理本构模型[J]. 材料开发与应用, 2022, 37(5):11-15.
|
[4] |
SABOKPA O, ZAREI-HANZAKI A, ABEDI H R, et al. Artificial neural network modeling to predict the high temperature flow behavior of an AZ81 magnesium alloy[J]. Materials & Design, 2012, 39(8):390-396.
|
[5] |
LI M Q. Modeling of microstructure during hot work-ing process by ANN[C]. In:Proceedings of the International Conference on AMT'99. USA:New York, 1999.
|
[6] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1):31-48.
|
[7] |
ZENER C, HOLLOMON J H. Effect of strain rate up-on plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1):22-32.
|
[8] |
田宪华, 闫奎呈, 赵军, 等. GH2132高温高应变率下力学性能分析与Johnson-Cook本构模型的建立[J]. 中国机械工程, 2022, 33(7):872-881.
|
[9] |
JONAS J J, SELLARS C M, MCG TEGART W J. Strength and structure under hot-working conditions[J]. International Materials Reviews, 1969, 14(1):1-24.
|
[10] |
权思佳, 宋克兴, 张彦敏, 等. 基于MATLAB的Ti80合金热变形行为及热加工图[J]. 稀有金属材料与工程, 2019, 48(11):3600-3607.
|
[11] |
张静, 蒋春霞, 乔帮威. 14Cr17Ni2钢高温变形行为及本构方程的研究[J]. 热加工工艺, 2018, 47(14):38-43.
|
[12] |
武宇, 宜楠, 乔慧娟, 等. Nb10Zr合金高温变形应变补偿型本构关系模型[J]. 稀有金属材料与工程, 2013, 42(10):2117-2122.
|
[13] |
牛继承, 王任甫, 袁亚民, 等. 超壁厚12CrNi5MoV钢锻件组织与力学性能研究[J]. 热加工工艺, 2010, 39(21):31-33.
|
[14] |
PRASAD Y, RAO K, SASIDHARA S. Hot working gu-ide:A compendium of processing maps(Second edition.)[M]. Materials Park, Ohio:ASM Interna-tional, 2015.
|