HUANG Dong, WEI Mengfei, ZHANG Yuxiang, JIANG Ying, CHENG Bin. High Temperature Constitutive Equation Considering Strain Compensation of 12CrNi5MoV Forged Steel[J]. Development and Application of Materials, 2024, 39(2): 81-88.
Citation: HUANG Dong, WEI Mengfei, ZHANG Yuxiang, JIANG Ying, CHENG Bin. High Temperature Constitutive Equation Considering Strain Compensation of 12CrNi5MoV Forged Steel[J]. Development and Application of Materials, 2024, 39(2): 81-88.

High Temperature Constitutive Equation Considering Strain Compensation of 12CrNi5MoV Forged Steel

More Information
  • Received Date: March 02, 2023
  • Available Online: May 08, 2024
  • The Gleeble-3500 thermal simulation tester is employed to investingate the thermal deformation behaviour of 12CrNi5MoV forged steel at deformation temperatures of 850-200 ℃ and strain rates of 0.1-0.001 s-1 by using a single-pass compression. The results show that dynamic recrystallisation occurs in 12CrNi5MoV forged steel at high temperatures and low strain rates, and that the recrystallisation doesn't or only partially occurs in 12CrNi5MoV forged steel at low temperatures and high strain rates. Based on the compression curve, the Arrhenius high-temperature principal model of 12CrNi5MoV forged steel is established, and its average relative error is 14.8 %; the Arrhenius high-temperature principal model of 12CrNi5MoV forged steel, which is established by taking strain compensation into consideration, has higher accuracy, with the average relative error 6.1 % and the correlation coefficient of 0.991.
  • [1]
    贺小毛. 1Cr12Ni3Mo2VN核电特大型叶片省力成形方法及组织控制[D]. 北京:机械科学研究总院, 2017.
    [2]
    叶丽燕. 大型核电转子用25Cr2Ni4MoV钢锻造及热处理过程组织演化研究[D]. 北京:机械科学研究总院, 2020.
    [3]
    仝智远, 宫旭辉. 10CrNi8MoV钢的拉伸塑性应变物理本构模型[J]. 材料开发与应用, 2022, 37(5):11-15.
    [4]
    SABOKPA O, ZAREI-HANZAKI A, ABEDI H R, et al. Artificial neural network modeling to predict the high temperature flow behavior of an AZ81 magnesium alloy[J]. Materials & Design, 2012, 39(8):390-396.
    [5]
    LI M Q. Modeling of microstructure during hot work-ing process by ANN[C]. In:Proceedings of the International Conference on AMT'99. USA:New York, 1999.
    [6]
    JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1):31-48.
    [7]
    ZENER C, HOLLOMON J H. Effect of strain rate up-on plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1):22-32.
    [8]
    田宪华, 闫奎呈, 赵军, 等. GH2132高温高应变率下力学性能分析与Johnson-Cook本构模型的建立[J]. 中国机械工程, 2022, 33(7):872-881.
    [9]
    JONAS J J, SELLARS C M, MCG TEGART W J. Strength and structure under hot-working conditions[J]. International Materials Reviews, 1969, 14(1):1-24.
    [10]
    权思佳, 宋克兴, 张彦敏, 等. 基于MATLAB的Ti80合金热变形行为及热加工图[J]. 稀有金属材料与工程, 2019, 48(11):3600-3607.
    [11]
    张静, 蒋春霞, 乔帮威. 14Cr17Ni2钢高温变形行为及本构方程的研究[J]. 热加工工艺, 2018, 47(14):38-43.
    [12]
    武宇, 宜楠, 乔慧娟, 等. Nb10Zr合金高温变形应变补偿型本构关系模型[J]. 稀有金属材料与工程, 2013, 42(10):2117-2122.
    [13]
    牛继承, 王任甫, 袁亚民, 等. 超壁厚12CrNi5MoV钢锻件组织与力学性能研究[J]. 热加工工艺, 2010, 39(21):31-33.
    [14]
    PRASAD Y, RAO K, SASIDHARA S. Hot working gu-ide:A compendium of processing maps(Second edition.)[M]. Materials Park, Ohio:ASM Interna-tional, 2015.

Catalog

    Article Metrics

    Article views (152) PDF downloads (15) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return