Citation: | CHEN Tingting, WEI Wu, SHI Wei, HAN Dongxue, HAN Enhou. Research Progress on Imaging Measurement Methods and Application of Planar Optode[J]. Development and Application of Materials, 2024, 39(5): 109-116. |
[1] |
GLUD R N, RAMSING N B, GUNDERSEN J K, et al. Planar optrodes: a new tool for fine scale measurements of two-dimensional O2 distribution in benthic communities[J]. Marine Ecology Progress Series, 1996, 140: 217-226.
|
[2] |
HULTH S, ALLER R C, ENGSTRÖM P, et al. A pH plate fluorosensor (optode) for early diagenetic studies of marine sediments[J]. Limnology and Oceanography, 2002, 47(1): 212-220.
|
[3] |
DERINKUYU S, ERTEKIN K, OTER O, et al. Fiber optic pH sensing with long wavelength excitable Schiff bases in the pH range of 7.0-12.0[J]. Analytica Chimica Acta, 2007, 588(1): 42-49.
|
[4] |
arene for dual colorimetric Ag+ and Hg2+ detection[J]. Analytica Chimica Acta, 2020, 1104: 147-155.
|
[4] |
JIANG Z K, YU X S, HAO Y Y. Design and fabrication of a ratiometric planar optode for simultaneous imaging of pH and oxygen[J]. Sensors, 2017, 17(6): 1316.
|
[5] |
姜子可, 于新生, 靳卫卫. 雨滴对水-气界面溶解氧与pH扩散影响的平面光极观测方法[J]. 海洋学报, 2018, 40(7): 134-42
|
[6] |
胡璇, 韩超, 方文, 等. 平板光极技术的基本原理及其在环境中的应用[J]. 环境化学, 2019, 38(4): 861-875.
|
[7] |
冉洪芋, 叶馨, 朱晓艳, 等. 平面光极基本原理及其在土壤微观异质性研究中的应用[J]. 土壤, 2021, 53(5): 916-928.
|
[8] |
CLARKE J S, ACHTERBERG E P, CONNELLY D P, et al. Developments in marine pCO2 measurement technology; towards sustained in situ observations[J]. TrAC Trends in Analytical Chemistry, 2017, 88: 53-61.
|
[9] |
BORISOV S M, KLIMANT I. Blue LED excitable tem-perature sensors based on a new europium(III) chelate[J]. Journal of Fluorescence, 2008, 18(2): 581-589.
|
[10] |
PHICHI M, IMYIM A, TUNTULANI T, et al. Pape-rbased cation-selective optode sensor containing benzothiazole calix
|
[11] |
GOLCS Á, DARGÓ G, BALOGH G T, et al. Develop-ment of a microplate-format direct optode sensor for ultra-high-throughput environmental and wastewater monitoring of Pb2+[J]. Analytica Chimica Acta, 2021, 1167: 338586.
|
[12] |
CAO Z R, ZHU Q Z, ALLER R C, et al. A fluorosensor for two-dimensional measurements of extracellular enzyme activity in marine sediments[J]. Marine Chemistry, 2011, 123(1-4): 23-31.
|
[13] |
LI C, DING S M, YANG L Y, et al. Planar optode: a two-dimensional imaging technique for studying spatial-temporal dynamics of solutes in sediment and soil[J]. Earth-Science Reviews, 2019, 197: 102916.
|
[14] |
GLUD R N, TENGBERG A, KÜHL M, et al. An in situ instrument for planar O2 optode measurements at benthic interfaces[J]. Limnology and Oceanography, 2001, 46(8): 2073-2080.
|
[15] |
HAKONEN A, HULTH S, DUFOUR S. Analytical performance during ratiometric long-term imaging of pH in bioturbated sediments[J]. Talanta, 2010, 81(4-5): 1393-1401.
|
[16] |
SANTNER J, LARSEN M, KREUZEDER A, et al. Two decades of chemical imaging of solutes in sediments and soils: a review[J]. Analytica Chimica Acta, 2015, 878: 9-42.
|
[17] |
OGURI K, KITAZATO H, GLUD R N. Platinum octaetylporphyrin based planar optodes combined with an UV-LED excitation light source: an ideal tool for high-resolution O2 imaging in O2 depleted environments[J]. Marine Chemistry, 2006, 100(1-2): 95-107.
|
[18] |
LARSEN M, BORISOV S M, GRUNWALD B, et al. A simple and inexpensive high resolution color ratiometric planar optode imaging approach: application to oxygen and pH sensing[J]. Limnology and Oceanography: Methods, 2011, 9(9): 348-360.
|
[19] |
KLIMANT I, MEYER V, KÜHL M. Fiber-optic oxygen microsensors, a new tool in aquatic biology[J]. Limnology and Oceanography, 1995, 40(6): 1159-1165.
|
[20] |
CHU C S, SYU J J. Optical sensor for dual sensing of oxygen and carbon dioxide based on sensing films coated on filter paper[J]. Applied Optics, 2017, 56(4): 1225-1231.
|
[21] |
ZHU Q Z, ALLER R C, FAN Y Z. A new rat-iometric, planar fluorosensor for measuring high resolution, twodimensional pCO2 distributions in marine sedi-ments[J]. Marine Chemistry, 2006, 101(1-2): 40-53.
|
[22] |
BORISOV S M, SEIFNER R, KLIMANT I. A novel planar optical sensor for simultaneous monitoring of oxygen, carbon dioxide, pH and temperature[J]. Analytical and Bioanalytical Chemistry, 2011, 400(8): 2463-2474.
|
[23] |
LIEBSCH G, KLIMANT I, FRANK B, et al. Luminescence lifetime imaging of oxygen, pH, and carbon dioxide distribution using optical sensors[J]. Applied Spectroscopy, 2000, 54(4): 548-559.
|
[24] |
HOLST G, KOHLS O, KLIMANT I, et al. A modular luminescence lifetime imaging system for mapping oxy-gen distribution in biological samples[J]. Sensors and Actuators B: Chemical, 1998, 51(1-3): 163-170.
|
[25] |
WALLACE A M. Greyscale image processing for industrial applications[J]. Image and Vision Computing, 1983, 1(4): 178-188.
|
[26] |
HAAS A F, GREGG A K, SMITH J E, et al. Visualization of oxygen distribution patterns caused by coral and algae[J]. PeerJ, 2013, 1: e106.
|
[27] |
CHRISTEL W, ZHU K, HOEFER C, et al. Spatiotemporal dynamics of phosphorus release, oxygen consumption and greenhouse gas emissions after localised soil amendment with organic fertilisers[J]. The Science of the Total Environment, 2016, 554-555: 119-129.
|
[28] |
SONG A, PARUS S, KOPELMAN R. High-performance fiber-optic pH microsensors for practical physiological measurements using a dual-emission sensitive dye[J]. Analytical Chemistry, 1997, 69(5): 863-867.
|
[29] |
KERMIS H R, KOSTOV Y, HARMS P, et al. Dual excitation ratiometric fluorescent pH sensor for noninvasive bioprocess monitoring: development and application[J]. Biotechnology Progress, 2002, 18(5): 1047-1053.
|
[30] |
ZHU Q Z, ALLER R C, FAN Y Z. Highperfor-mance planar pH fluorosensor for two-dimensional pH measurements in marine sediment and water[J]. Environmental Science & Technology, 2005, 39(22): 8906-8911.
|
[31] |
STAHL H, GLUD A, SCHRÖDER C R, et al. Time-resolved pH imaging in marine sediments with a luminescent planar optode[J]. Limnology and Oceanography: Methods, 2006, 4(10): 336-345.
|
[32] |
GLUD R N, BERG P, STAHL H, et al. Benthic carbon mineralization and nutrient turnover in a Scottish Sea loch: an integrative in situ study[J]. Aquatic Geochemistry, 2016, 22(5): 443-467.
|
[33] |
SCHROEDER C R, NEURAUTER G, KLIMANT I. Luminescent dual sensor for time-resolved imaging of pCO2 and pO2 in aquatic systems[J]. Microchimica Acta, 2007, 158(3): 205-218.
|
[34] |
DRAXLER S, LIPPITSCH M E, KLIMANT I, et al. Effects of polymer matrixes on the time-resolved luminescence of a ruthenium complex quenched by oxygen[J]. The Journal of Physical Chemistry, 1995, 99(10): 3162-3167.
|
[35] |
BORISOV S M, NUSS G, KLIMANT I. Red lightexcitable oxygen sensing materials based on platinum(II) and palladium(II) benzoporphyrins[J]. Analytical Chemistry, 2008, 80(24): 9435-9442.
|
[36] |
SCHRÖDER C R, WEIDGANS B M, KLIMANT I. pH Fluorosensors for use in marine systems[J]. Analyst, 2005, 130(6): 907-916.
|
[37] |
PRECHT E, FRANKE U, POLERECKY L, et al. Oxygen dynamics in permeable sediments with wave-driven pore water exchange[J]. Limnology and Oceangraphy,2004, 49(3): 693-705.
|
[38] |
RUDOLPH N, VOSS S, MORADI A B, et al. Spa-tiotemporal mapping of local soil pH changes induced by roots of lupin and soft-rush[J]. Plant and Soil, 2013, 369(1): 669-680.
|
[1] | CHEN Leilei, CHEN Shanshan, NIU Yongfeng, LIN Jiancong, YANG Mingliang, LIU Yilong. Research Progress of Marine Antifouling Biocides[J]. Development and Application of Materials, 2021, 36(5): 94-102. |
[2] | JIA Yanbing, GAO Hongbiao, QIAN Zhenghong, LIU Biyan, WANG Panjun. Research and Application of On-line Monitoring Technology of Offshore Wind Power Equipment Corrosion[J]. Development and Application of Materials, 2021, 36(3): 95-100. |
[3] | WANG Wenfei. Research on the Effect of Seawater on the Properties of Ship Polymer Damping Materials under Marine Environment Conditions[J]. Development and Application of Materials, 2021, 36(1): 1-6. |
[4] | ZHAO Baijie, ZHAO Junjie, FAN Yi, CHEN Linheng, ZHAO Jinbin, LI Xiang, MA Lingwei, CHENG Xuequn. Corrosion Behaviors of Mo-containing Low Alloy Steels Exposed in Simulated Acidic Marine Atmosphere Environment[J]. Development and Application of Materials, 2019, 34(6): 86-95. DOI: 10.19515/j.cnki.1003-1545.2019.06.017 |
[5] | WANG Qi, TANG Lirong, LI Yanhong, WANG Jingjing, XIE Zhipeng. Research on Underwater Antifouling Coating for Marine Engineering[J]. Development and Application of Materials, 2017, 32(1): 30-35. DOI: 10.19515/j.cnki.1003-1545.2017.01.006 |
[6] | WANG Wenfei, SHI Lei. Research on Aging Properties of Ship Polymer Materials under Different Marine Environment Conditions[J]. Development and Application of Materials, 2016, 31(1): 74-77. DOI: 10.19515/j.cnki.1003-1545.2016.01.017 |
[7] | GU Mei-bang. An lnvesigation in Corrosion of Low-alloy Steel in Marine Environment[J]. Development and Application of Materials, 2012, 27(1): 40-42. DOI: 10.19515/j.cnki.1003-1545.2012.01.010 |
[8] | YIN Da-gen, DU Yong, LIU Xiao-xia, LUO Jin. Progresses in Biosensors Based on Carbon Nanotubes Used in Environmental Monitoring[J]. Development and Application of Materials, 2011, 26(4): 70-76. DOI: 10.19515/j.cnki.1003-1545.2011.04.015 |
[9] | ZHANG He, YU Hai-yong, WANG Qiong, DENG Yong-mei. Research of the Influence of Concrete Designed Value to Corrosion of the Steel Bar under Chloride Environment[J]. Development and Application of Materials, 2008, 23(6): 61-65,75. DOI: 10.19515/j.cnki.1003-1545.2008.06.017 |
[10] | Zhao Xiaoyan. The Research Progress of the Marine Natural Product Antifoulants[J]. Development and Application of Materials, 2001, 16(4): 34-37. DOI: 10.19515/j.cnki.1003-1545.2001.04.010 |