DING Penglong, CHENG Yingjin, HE Liang. Numerical Simulation and Control of Block Welding Deformation of Large Steel Deck[J]. Development and Application of Materials, 2023, 38(1): 9-16.
Citation: DING Penglong, CHENG Yingjin, HE Liang. Numerical Simulation and Control of Block Welding Deformation of Large Steel Deck[J]. Development and Application of Materials, 2023, 38(1): 9-16.

Numerical Simulation and Control of Block Welding Deformation of Large Steel Deck

More Information
  • Received Date: May 16, 2022
  • Available Online: March 10, 2023
  • The welding deformation of large steel deck blocks is studied by the thermal elastic plastic finite element method. The change of the structure and stress field can be obtained based on the 3D Shell element and the double ellipsoid heat source model, and then the welding deformation of large steel deck blocks and the residual stress distribution can be acquired. The influences of different welding sequences and fixture arrangements of the deck bocks on the residual stress and the welding deformation are studied. The results show that the deformation caused by the symmetry alternant welding method is the smallest. The welding deformation and the amount of work are both small when putting battens to the edge and center of the deck block. By optimizing the welding sequence and fixture arrangement, the welding of the large steel deck can be accurately controlled.
  • [1]
    吴润辉,王永兴,张波,等.船舶焊接工艺[M].哈尔滨:哈尔滨工程大学出版社, 1996:298-299.
    [2]
    MURAKAWA H, DENG D A, MA N S, et al. Applications of inherent strain and interface element to simulation of welding deformation in thin plate structures[J]. Computational Materials Science, 2012, 51(1):43-52.
    [3]
    王阳.大型复杂船体结构焊接变形分析方法的研究及应用[D].上海:上海交通大学,2015.
    [4]
    周宏,罗宇,蒋志勇,等.基于ANSYS的船舶复杂结构焊接变形预测研究[J].中国造船, 2010, 51(2):57-67.
    [5]
    史雄华,牛业兴,向生,等.船体结构焊接变形的预测与控制研究进展[J].造船技术, 2019(1):1-6.
    [6]
    任帅.船体典型构件焊接工艺仿真及分段装焊变形预测研究[D].镇江:江苏科技大学, 2017.
    [7]
    MASUBUCHI K. Analysis of welded structures:residual stresses, distortion, and their consequences[M]. Oxford:Pergamon Press, 1980.
    [8]
    李磊,任帅,王鹏宇,等.大型船体舷侧分段装焊顺序仿真及其变形预测研究[J].热加工工艺, 2018, 47(23):206-211.
    [9]
    李婧.大型船体焊接变形仿真技术研究及其应用:50000T多用途船货舱双层底结构焊接变形预测[D].上海:上海交通大学, 2011.
    [10]
    黄振华.船体型材对接焊的焊接顺序优化研究[D].大连:大连理工大学, 2009.
    [11]
    沈济超.大型船体结构焊接变形热弹塑性有限元数值模拟方法研究[D].上海:上海交通大学, 2015.
    [12]
    曾阳.船体板架结构焊接变形预测控制及影响因素研究[D].哈尔滨:哈尔滨工程大学, 2015.
    [13]
    LI J, GUAN Q, GUO D, et al. Effects of distance between arc and heat sink on stress and distortion in DC-LSND welding technology[J].中国焊接, 2007(3):16.
    [14]
    MICHALERIS P, DANTZIG J, TORTORELLI D. M-inimization of welding residual stress and distortion in large structures:finite element analysis, analysis sensitivity analysis and nonlinear programming are implemented to investigate thermal tensioning[J]. Welding Journal, 1999(11):78.
    [15]
    DEO M V, MICHALERIS P. Mitigation of welding induced buckling distortion using transient thermal tensioning[J].Science and Technology of Welding and Joining, 20038(1):49-54.
    [16]
    钟华,佟新伟,程文韬,等.大型纵向桁材式基座焊接变形仿真与控制[J].材料开发与应用, 2021, 36(1):71-76.
  • Related Articles

    [1]WANG Weijia, LI Fengyuan, ZHANG Zixuan, YANG Dongshu, HUANG Ying. Research Progress in Cathode Material for Lithium-Sulfur Batteries[J]. Development and Application of Materials, 2023, 38(3): 96-104.
    [2]LI Xiang, GAO Xiaogang, CAI Yingchao, ZHANG Jiaxin, WANG Linqian, HUANG Ying. Application Study on Metallic Organic Framework Compounds in Lithium-sulfur Batteries[J]. Development and Application of Materials, 2020, 35(1): 40-46,67.
    [3]DOU Wenjie, HUANG Ying, SUN Xu, ZHANG Weichao. Conductive Polymers in the Application of Lithium-sulfur Batteries[J]. Development and Application of Materials, 2017, 32(6): 116-122. DOI: 10.19515/j.cnki.1003-1545.2017.06.019
    [4]ZHANG Weichao, HUANG Ying, WU Haiwei. Research Progress of Sulfur-based Anode Material in Lithium-sulfur Batteries[J]. Development and Application of Materials, 2016, 31(6): 99-106,110. DOI: 10.19515/j.cnki.1003-1545.2016.06.020
    [5]WANG En-tong, YANG Lin-fang, REN Yin-zhe. Sol-gel Synthesis and Electrochemical Performance of Li1+xV3O8 Cathode Material for Lithium-ion Battery[J]. Development and Application of Materials, 2012, 27(4): 75-79. DOI: 10.19515/j.cnki.1003-1545.2012.04.018
    [6]ZHOU Hong-bing, MEI Zhi-yuan. Energy Absorption Mechanism of MCFS Structure Impacted by High Velocity FSP[J]. Development and Application of Materials, 2011, 26(4): 1-6. DOI: 10.19515/j.cnki.1003-1545.2011.04.001
    [7]WU Rui-xiang, CHEN Cheng, ZHANG Chun-you. Research on Cracking Mechanism of WC Based High Mn Steel-bonded Carbide[J]. Development and Application of Materials, 2005, 20(1): 16-18. DOI: 10.19515/j.cnki.1003-1545.2005.01.005
    [8]Li Jun, Zhu Dongsheng, Fang Liguo, Wu Huijun, Zhao Zhaohui. Preparation of Lithium Battery Cathode Material LiNi0.8Co0.2O2[J]. Development and Application of Materials, 2003, 18(5): 14-16,20. DOI: 10.19515/j.cnki.1003-1545.2003.05.004
    [9]Zhou Yanfang, Zhong Hui. Research Progress in Positive Electrode Materials for Lithium Ion Battery[J]. Development and Application of Materials, 2003, 18(2): 34-38,42. DOI: 10.19515/j.cnki.1003-1545.2003.02.012
    [10]Zai Xuerong. Research Trend of Li-Mn-Oxide Cathode for Li-Ion Cells[J]. Development and Application of Materials, 2002, 17(2): 39-42. DOI: 10.19515/j.cnki.1003-1545.2002.02.012
  • Cited by

    Periodical cited type(2)

    1. 张利娟,刘攀,杜米芳,刘辉,刘国元,赵阳,张欣耀. 火花源原子发射光谱法测定变形铝合金中痕量钠. 中国无机分析化学. 2024(12): 1724-1728 .
    2. 林志成,赵运强,闫德俊,刘莉,董春林. 高镁铝合金搅拌摩擦交叉焊接头微观组织与力学性能. 焊接学报. 2022(10): 24-30+114-115 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (187) PDF downloads (38) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return