Citation: | MA Yunfei, WANG Yinghui, XIONG Yi, LUAN Zewei, SHU Kanghao, LÜ Wei. Effect of Laser Shock Processing on Microstructure and Mechanical Properties of 300M Steel[J]. Development and Application of Materials, 2022, 37(6): 55-62. |
[1] |
ZHANG S S,LI M Q, LIU Y G, et al. The growth behavior of austenite grain in the heating process of 300M steel[J]. Materials Science and Engineering:A, 2011, 528(15):4967-4972.
|
[2] |
SKUBISZ P, SINCZAK J. Properties of directquen-ched aircraft forged component made of ultrahig-hstrength steel 300M[J]. Aircraft Engineering and Aerospace Technology, 2018, 90(5):713-719.
|
[3] |
GUO Q, LIU J H, YU M, et al. Influence of rust layers on the corrosion behavior of ultra-high strength steel 300M subjected to wet-dry cyclic environment with chloride and low humidity[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(2):139-146.
|
[4] |
HAMEED A, ZUBAIR O, SHAMS T A,et al. Failure analysis of a broken support strut of an aircraft landing gear[J]. Engineering Failure Analysis, 2020, 117:104847.
|
[5] |
ACHARYA S, SUWAS S, CHATTERJEE K. Review of recent developments in surface nanocrystallization of metallic biomaterials[J]. Nanoscale, 2021, 13(4):2286-2301.
|
[6] |
刘蕾, 孙剑伟. 轴承表面改性技术的研究现状与展望[J]. 材料开发与应用, 2019, 34(4):84-90.
|
[7] |
GUO W,SUN R, SONG B,et al. Laser shock pee-ning of laser additive manufactured Ti6Al4V titanium alloy[J]. Surface and Coatings Technology, 2018, 349:503-510.
|
[8] |
CHATTOPADHYAY A, MUVVALA G, SARKAR S, et al. Effect of laser shock peening on microstructural, mechanical and corrosion properties of laser beam welded commercially pure titanium[J]. Optics & Laser Technology, 2021, 133:106527.
|
[9] |
LOUS, LIY, ZHOU L,etal. Surface nanocrystalliza-tion of metallic alloys with different stacking fault energy induced by laser shock processing[J]. Materials&Design, 2016, 104:320-326.
|
[10] |
LI Y Q, WANG X D, SONG F L, et al. Effect of residual stress and microstructures on 316 stainless steel treated by LSP[J]. Materials Science Forum, 2017, 898:1261-1265.
|
[11] |
ZHANG H P,CAI Z Y, WAN Z D, et al. Microstructure and mechanical properties of laser shock peened 38CrSi steel[J]. Materials Science and Engineering:A, 2020, 788:139486.
|
[12] |
汪军, 李民, 汪静雪, 等. 激光冲击强化对304不锈钢疲劳寿命的影响[J]. 中国激光, 2019, 46(1):8.
|
[13] |
陈彬, 张兴权. 激光冲击强化对回转支承用钢42CrMo表面性能的影响[J]. 表面技术, 2019, 48(2):72-78.
|
[14] |
WANG C Y, LUO K Y, BU X Y,et al. Laser shock peening-induced surface gradient stress distribution and extension mechanism in corrosion fatigue life of AISI 420 stainless steel[J]. Corros-ion Science, 2020, 177:109027.
|
[15] |
LU J Z,LUOKY, ZHANGYK, etal. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J]. Acta Materialia, 2010, 58(16):5354-5362.
|
[16] |
LUOS, ZHOUL, WANGX, et al. Surface nanocrystallization and amorphization of dual-phase TC11 titani-um alloys under laser induced ultrahigh strain-rate plastic deformation[J]. Materials (Basel, Switzerland), 2018, 11(4):E563.
|
[17] |
YE C, SUSLOV S, FEI X,et al. Bimodal nanocrystallization of NiTi shape memory alloy by laser shock peening and post-deformation annealing[J]. Acta Materialia, 2011, 59(19):7219-7227.
|
[18] |
LUJ Z, LUOK Y, ZHANGYK, etal. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11):3984-3994.
|
[19] |
高玉魁, 陶雪菲. 高速冲击表面处理对金属材料力学性能和组织结构的影响[J]. 爆炸与冲击, 2021, 41(4):4-29.
|
[20] |
AN X H, WU S D, WANG Z G, et al. Significance of stacking fault energy in bulk nanostructured materi-als:insights from Cu and its binary alloys as model systems[J]. Progress in Materials Science, 2019, 101:1-45.
|
[21] |
LI Y S,ZHANG Y, TAO N R, et al. Effect of the Zener-Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation[J]. Acta Materialia, 2009, 57(3):761-772.
|
[22] |
LIUD, LIU D X, ZHANG X H,et al. Surface nanocrystallization of 17-4 precipitation-hardening stain-less steel subjected to ultrasonic surface rolling proc-ess[J]. Materials Science and Engineering:A, 2018, 726:69-81.
|
[23] |
ZHOULC, LIYH, HEWF, et al.Deforming TC6 titanium alloys at ultrahigh strain rates during multiple laser shock peening[J]. Materials Science and Engineering:A, 2013, 578:181-186.
|
[24] |
DHAKAL B, SWAROOP S. Effect of laser shock peening on mechanical and microstructural aspects of 6061-T6 aluminum alloy[J]. Journal of Materials Processing Technology, 2020, 282:116640.
|
[25] |
BRANDSTETTER S, DERLETPM, VAN PETEGEMS, etal. Williamson-hall anisotropy in nanocrystalline metals:X-ray diffraction experiments and atomistic simulations[J]. Acta Materialia, 2008, 56(2):165-176.
|
[26] |
MARKMANN J, YAMAKOV V, WEISSMüLLERJ. Validating grain size analysis from X-ray line broadening:a virtual experiment[J]. Scripta Materialia, 2008, 59(1):15-18.
|
[27] |
RAI A K, BISWALR, Gupta, RK, et al. Study on the effect of multiple laser shock peening on residual stress and microstructural changes in modified 9Cr-1Mo (P91) steel[J]. Surface and Coatings Technology, 2019, 358:125-135.
|
[28] |
熊毅, 李鹏燕, 陈路飞, 等. 激光冲击处理超细晶粒高碳钢的微观组织和力学性能[J]. 材料研究学报, 2015, 29(6):469-474.
|
[29] |
卢柯. 梯度纳米结构材料[J]. 金属学报, 2015, 51(1):1-10.
|
[30] |
LUJ Z,LUOKY,ZHANGY K, et al. Effects of laser shock processing and strain rate on tensile property of LY2 aluminum alloy[J]. Materials Science and Engineering:A, 2010, 528(2):730-735.
|
[1] | DONG Entao, TENG Aijun, GENG Naitao, FANG Qiang, KANG Qiang, GUO Jie, ZHANG Tianxin. Evolution of Microstructure and Mechanical Properties of TB9 Alloy Bar and Wire during Production Process[J]. Development and Application of Materials, 2024, 39(4): 59-65,122. |
[2] | GENG Yaoxiang, SHAN Zhifa, CHEN Yongkang, ZAI Chunfeng, WANG Xiao, GAO Xing, WANG Yuxin. Processability, Microstructure, and Mechanical Property of Al-Si-Mg-Zr-Cu Alloy Fabricated by Selective Laser Melting[J]. Development and Application of Materials, 2024, 39(1): 23-29. |
[3] | HOU Lili, GUO Qiang, YAO Yuhong, LIU Jiangnan. Microstructure and Mechanical Properties of Annealed CoFeNiCrMnBx High Entropy Alloy[J]. Development and Application of Materials, 2023, 38(2): 44-48. |
[4] | WANG Yuan, DONG Jian, GUAN Yulong, ZHAO Baojie, ZHANG Haishen. Effect of Process on Microstructure and Mechanical Properties of TA5 Alloy Sheets[J]. Development and Application of Materials, 2022, 37(4): 61-64. |
[5] | YANG Yong, WANG Binbin, LI Yanjie, LUO Liangshun, HUANG Haiguang, WANG Liang, SU Yanqing, GUO Jingjie, FU Hengzhi. Impact of Trace Cu Addition on Microstructure, Mechanical Property and Corrosion Behavior of TA10 Alloy[J]. Development and Application of Materials, 2022, 37(3): 5-12,20. |
[6] | WU Xiaofei, DUAN Mengqiang, WU Yukun, WANG Qi, JIANG Peng. Effect of Heat Treatment on Microstructure and Mechanical Properties of Ti5211 Plates[J]. Development and Application of Materials, 2020, 35(4): 11-13,23. |
[7] | HUANG Wei, WANG Shaogang, LI Lize, JIN Yang. Laser Beam Welding of Titanium Alloy and Microstructure and Mechanical Properties of Welded Joint[J]. Development and Application of Materials, 2019, 34(2): 20-27. DOI: 10.19515/j.cnki.1003-1545.2019.02.004 |
[8] | LOU Guan-tao. Influence of Filler Metals on the Mechanical Properties and Microstructure of ZTA5 Welds[J]. Development and Application of Materials, 2013, 28(3): 23-26. DOI: 10.19515/j.cnki.1003-1545.2013.03.005 |
[9] | LOU Guan-tao. Influence of Treatment after casting on the Mechanical Properties and Microstructure of ZTA7 Cast Titanium Alloy Material[J]. Development and Application of Materials, 2010, 25(1): 16-18,54. DOI: 10.19515/j.cnki.1003-1545.2010.01.005 |
[10] | LU Xiao-sheng, LIU Hong. Effects of Flame Process on Mechanical Properties and Microstructure of Continuous Casting 10MnNiCrMoV Plate[J]. Development and Application of Materials, 2006, 21(3): 18-22. DOI: 10.19515/j.cnki.1003-1545.2006.03.007 |