HE Lei, HE Liang, MA Xiaoyang. Design of Database Application System for Hull Structural Steel and Welding Materials[J]. Development and Application of Materials, 2021, 36(6): 49-55.
Citation: HE Lei, HE Liang, MA Xiaoyang. Design of Database Application System for Hull Structural Steel and Welding Materials[J]. Development and Application of Materials, 2021, 36(6): 49-55.

Design of Database Application System for Hull Structural Steel and Welding Materials

More Information
  • Received Date: July 12, 2021
  • In order to promote the storage validity and utilization efficiency, the database application system of hull structural steel and welding materials is designed and developed by using SQL Server as background database, VB as system development and ODBC data source as connection technology. The system has four functional modules:structural steel information query, welding material information query, standard query and report query. Structural steel welding rod has been taken as an example to test the practicability of the system. The mechanical performance prediction is realized by the construction of the intelligent framework for performance prediction and the neural network model, and the transformation of neural network matrix model into VB code. It has a certain reference and practical value for the design of structural steel and welding materials.
  • [1]
    张豪, 雷运涛, 魏金山. 高强度船体结构钢的现状与发展[J]. 钢结构, 2004, 19(2):38-40.
    [2]
    王卓, 王礞, 雍歧龙, 等. 材料信息学及其在材料研究中的应用[J]. 中国材料进展, 2017, 36(2):132-140.
    [3]
    杨丽, 苏航, 柴锋, 等. 材料数据库和数据挖掘技术的应用现状[J]. 中国材料进展, 2019, 38(7):672-681.
    [4]
    何冰, 米鹏辉, 张力文, 等. The Most Comprehensive Database of Ionic Transport Characteristics to Date[J]. 材料导报, 2020, 34(20):20001-20002.
    [5]
    向勇, 闫宗楷, 朱焱麟, 等. 材料基因组技术前沿进展[J]. 电子科技大学学报, 2016, 45(4):634-649.
    [6]
    GU Q, ZHONG R, JU D Y. Development of materials database system for cae system of heat treatment based on data mining technology[J]. Transactions of Nonferrous Metals Society of China, 2006, 16:s572-s576.
    [7]
    LEI T Y, PENG W P, LEI J, et al. A product mo-dule mining method for PLM database[J]. Journal of Central South University, 2016, 23(7):1754-1766.
    [8]
    XU R, ZHAO Y H, HAN Q Z, et al. On the database-based strategy of candidate extractant generation for de-phenol process in coking wastewater treatment[J]. Chinese Journal of Chemical Engineering, 2018, 26(7):1570-1580.
    [9]
    JIE J S, WENG M Y, LI S N, et al. A new MaterialGo database and its comparison with other high-throughput electronic structure databases for their predicted energy band gaps[J]. Science China Technological Sciences, 2019, 62(8):1423-1430.
    [10]
    唐辉, 齐乐华, 李贺军. 基于SQL Server的C/C复合材料实验数据库系统平台的设计开发[J]. 新型炭材料, 2007, 22(2):148-152.
  • Related Articles

    [1]GUAN Haozhen, ZHANG Yu, SUN Lei, WU Yanming. Neural Network Modeling and Parameter Prediction for Arc Length of Pulsed Gas Metal Arc Welding[J]. Development and Application of Materials, 2024, 39(3): 28-35.
    [2]GUO Xiang, WANG Min, ZHAO Liming. Research on Elastic Material Parameter Inversion and Prediction Model Based on Dynamic and Static Tests of Rubber Isolator[J]. Development and Application of Materials, 2023, 38(1): 73-80.
    [3]ZHANG Jintian, WANG Renfu, WANG Xinghua. The Weld Bead Dimensional Prediction of Wire and Arc Additive Manufacture for Ship Steel[J]. Development and Application of Materials, 2018, 33(2): 17-22. DOI: 10.19515/j.cnki.1003-1545.2018.02.003
    [4]LIU Peng, HE Liang, ZHANG Yu-xiang, ZHU Bing-kun. Advances in Prediction of Martensite Start Temperature for Steel[J]. Development and Application of Materials, 2015, 30(4): 88-92. DOI: 10.19515/j.cnki.1003-1545.2015.04.017
    [5]HE Liang, NIU Ji-cheng, ZHANG Yu-xiang, XUE Gang, WANG Tao, ZHU Bing-kun. Prediction of Austenite Decomposition Temperature in Weld Metal[J]. Development and Application of Materials, 2015, 30(2): 32-36. DOI: 10.19515/j.cnki.1003-1545.2015.02.007
    [6]GU Xin-sheng, YAO Run-gang, KONG Hong-yu, LIU Ju. Application of Artificial Neural Network in Welding Technology[J]. Development and Application of Materials, 2010, 25(4): 72-76. DOI: 10.19515/j.cnki.1003-1545.2010.04.018
    [7]ZHANG Rui, HU Rong-qiang. Use of Neural Network Internal Model Control in Automotive Crankshaft Fillet Rolling System[J]. Development and Application of Materials, 2009, 24(6): 89-92. DOI: 10.19515/j.cnki.1003-1545.2009.06.022
    [8]SUN She-ying. Analysis and Prediction of Damping Properties of Viscoelastic Materials[J]. Development and Application of Materials, 2004, 19(5): 5-8,17. DOI: 10.19515/j.cnki.1003-1545.2004.05.002
    [9]Liu Peidong, Liu Ping, ‚Su Juanhua, ‚Kang Buxi. Property Prediction of Aged Copper Alloys Based on Artificial Neural Network[J]. Development and Application of Materials, 2003, 18(6): 17-20. DOI: 10.19515/j.cnki.1003-1545.2003.06.005
    [10]Chen Bin, Dong Qiming, Liu Ping, Kang Buxi, Tian Baohong, Huang Jinliang. Fuzzy Predictive Model for Microhardness of Aging Treatment Cu-Fe-P Alloys[J]. Development and Application of Materials, 2003, 18(3): 22-24. DOI: 10.19515/j.cnki.1003-1545.2003.03.007
  • Cited by

    Periodical cited type(4)

    1. 刘景武,张蕾,杜义,孙磊,王杏华,张晓,董星. 785 MPa及以上高强钢焊接材料的研发现状与展望. 精密成形工程. 2025(02): 62-75 .
    2. 黄一丹,孙良,江涛,杨佳,韩鹏岳,贾晋. 油气管道焊接材料数据库应用系统研究. 焊管. 2024(04): 45-50 .
    3. 钱江,李彤,刘健,刘景武. 焊接工艺对10CrNiCu钢药芯焊丝熔敷金属组织和力学性能的影响. 材料开发与应用. 2024(06): 53-59+66 . 本站查看
    4. 洪语晨,郁毅明,王晔,董启文. 多源数据辅助材料研发的数据应用系统. 华东师范大学学报(自然科学版). 2022(05): 14-25 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (168) PDF downloads (18) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return