LI Guo, WEI Jianhui, ZHU Jun, LI Xiang, FU Xin. Properties of Flame Retardancy and Low Toxicity of Siloxane Modified Vinyl Ester Resin Composites[J]. Development and Application of Materials, 2024, 39(3): 82-88.
Citation: LI Guo, WEI Jianhui, ZHU Jun, LI Xiang, FU Xin. Properties of Flame Retardancy and Low Toxicity of Siloxane Modified Vinyl Ester Resin Composites[J]. Development and Application of Materials, 2024, 39(3): 82-88.

Properties of Flame Retardancy and Low Toxicity of Siloxane Modified Vinyl Ester Resin Composites

More Information
  • Received Date: February 08, 2023
  • Available Online: July 22, 2024
  • The forming process, mechanical property, flame retardancy and low toxicity of the glass fiber reinforced siloxane modified vinyl resin composites are studied. It is found that when the thickness of the laminate is less than 40 mm, the composite material can be formed by vacuum assisted resin infusion(VARI) in the primary forming, and the formation is fine. When the thickness of the laminate is more than 40 mm, the composite material can be formed by VARI in the secondary forming. The mechanical properties of the modified composites decrease by less than 10%. The properties of flame retardancy and low toxicity of the siloxane modified vinyl resin composites are studied by oxygen index, low flame seeding, smoke toxicity, normal temperature toxicity and high temperature toxicity tests. The results show that the synergistic flame retardancy of the phosphorus and silicon significantly improves the flame retardancy of the composite, and that the oxygen index increases from 24.5% to 38.0%. The low flame retardancy can meet the service conditions of the wall and ceiling lining. The low toxicity and low smoke properties of the siloxane compounds significantly reduce the smoke and toxicity of the composites. The smoke density of the siloxane modified vinyl resin composites is 189, and its toxicity is low, which can be used in a closed environment.
  • [1]
    曾汉民.高分子复合材料的进展:纤维增强树脂基复合材料(续)Ⅱ.纤维增强材料和纤维增强热固性树脂复合材料[J].材料工程, 1989, 17(6):8-20.
    [2]
    TANAKA K, CHUJO Y. Advanced functional materi-als based on polyhedral oligomeric silsesquioxane (POSS)[J]. Journalof Materials Chemistry, 2012, 22(5):1733-1746.
    [3]
    WALCZAK M, JANUSZEWSKI R, FRANCZYK A, et al. Synthesis of monofunctionalized POSS through hydrosilylation[J]. Journal of Organometallic Chemistry, 2018, 872:73-78.
    [4]
    YE M F, WU Y W, ZHANG W C, et al. Synthesis of incompletely caged silsesquioxane (T7-POSS) compounds via a versatile three-step approach[J]. Research on Chemical Intermediates, 2018, 44(7):4277-4294.
    [5]
    陈达,高东静.笼型倍半硅氧烷(POSS)的应用进展研究[J].现代化工, 2015, 35(4):21-24.
    [6]
    王占彬,冷世伟,范金娟,等.八苯基笼型倍半硅氧烷的官能化及其在高分子纳米复合材料中的应用[J].高分子通报, 2011(9):63-70.
    [7]
    何辉,袭锴,葛仁杰,等.笼型倍半硅氧烷(POSS)的合成及应用进展[J].高分子材料科学与工程, 2008, 24(4):5-9.
    [8]
    康永.笼型倍半硅氧烷改性树脂的性能分析[J].上海塑料, 2011(4):12-15.
    [9]
    韩旭,张晓华,张松利,等.含磷氮POSS改性乙烯基树脂的阻燃性和热性能研究[J].化学通报(印刷版), 2021, 84(10):1066-1073.
    [10]
    邱武辉.POSS基含磷嵌段共聚物的合成与无卤阻燃环氧树脂的研究[D].厦门大学,2014.
    [11]
    郝玉秀.含羟基POSS的合成及其改性硅树脂耐热性的研究[D].哈尔滨:哈尔滨工业大学,
    [12]
    邱求元. POSS改性环氧树脂及其热性能与流变行为研究[D].长沙:国防科学技术大学, 2007.
    [13]
    宋冉冉. POSS改性环氧树脂及复合材料性能研究[D].哈尔滨:哈尔滨工业大学, 2019.
    [14]
    金晶,安秋凤,杨博文,等.环氧基POSS改性环氧树脂的研制与性能研究[J].化工学报, 2020, 71(5):2432-2439.
    [15]
    LIU B B, WANG H L, GUO X Y, et al. Effects of an organic-inorganic hybrid containing allyl benzoxazine and POSS on thermal properties and flame retardancy of epoxy resin[J]. Polymers, 2019, 11(5):770.
    [16]
    CHRU Ś CIEL J J, LE ŚNIAK E. Modification of ep-oxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates[J]. ProgressinPoly-mer Science, 2015, 41:67-121.
    [17]
    袁刚,饶秋华. POSS的合成及其在环氧树脂改性中的应用进展[J].材料开发与应用, 2014, 29(5):104-112.
    [18]
    中国国家标准化管理委员会.纤维增强塑料拉伸性能试验方法:GB/T 1447-2005[S].北京:中国标准出版社,2005.
    [19]
    中国国家标准化管理委员会.纤维增强塑料弯曲性能实验方法:GB/T 1449-2005[S].北京:中国标准出版社,2005.
    [20]
    中国国家标准化管理委员会.纤维增强塑料燃烧性能实验方法-氧指数法:GB/T 8924-2005[S].北京:中国标准出版社,2005.
    [21]
    国际海事组织海上安全委员会.2010年国际耐火试验程序应用规则第5部分表面可燃性实验[S].北京:人民交通出版社,2011.
    [22]
    国际海事组织海上安全委员会.2010年国际耐火试验程序应用规则第2部分烟气及其毒性测试.北京:人民交通出版社,2011.
    [23]
    MORGAN A B, GILMAN J W. An overview of flame retardancy of polymeric materials:application, technology, and future directions[J]. Fire and Materials, 2013, 37(4):259-279.
    [24]
    LIU Y, WANG Q. Melamine cyanuratemicroencapsulated red phosphorus flame retardant unreinforced and glass fiber reinforced polyamide 66[J]. Polymer Degradation and Stability, 2006, 91(12):3103-3109.
    [25]
    XUT C, ZHANGL F, CHENGZ P, et al. A novel m-ethacrylate with a bisphosphonate group:raft polymerization and flame retardant property of the resultant polymers[J]. Polymer Chemistry, 2015, 6(12):2283-2289.
    [26]
    许一婷,王华进,王子超,等.阻燃剂多尺度结构设计与绿色火安全材料研发[J].厦门大学学报(自然科学版), 2021, 60(2):247-262.
    [27]
    MARTÍN C, LLIGADAS G, RONDA J C, et al. Synthesis of novel boron-containing epoxy-novolac resins and properties of cured products[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2006, 44(21):6332-6344.
  • Related Articles

    [1]DANG Ning, WEI Chen, HUI Cheng, YANG Yuanyu, YANG Shangyu, WANG Jianjun, HAN Lihong. Development of Three-dimensional Characterizations and Electro-pulse Repairing Technology for Forming Defects within Ti Component by Laser Additive Manufacturing[J]. Development and Application of Materials, 2024, 39(4): 83-97.
    [2]LI Qiulong, XU Zhe, GUO Jiguan, LIU Xiangqian, LI Peiyue, YU Yan. Research on Effect of Defect Dimension on Diffusion Bonding of Printed Circuit Heat Exchanger[J]. Development and Application of Materials, 2021, 36(2): 74-78.
    [3]LI Bo-bo, CHEN Tao, LIU Yin-qi, BAO Shu-juan. Analysis on Delamination Defects of Cold Rolled Titanium Strip[J]. Development and Application of Materials, 2015, 30(5): 35-39. DOI: 10.19515/j.cnki.1003-1545.2015.05.007
    [4]HUANG Wei-zhong, LIN Ying-jun, ZHOU Jian. Relationship between Particle Defects of PVC and Filler Size[J]. Development and Application of Materials, 2015, 30(2): 26-31. DOI: 10.19515/j.cnki.1003-1545.2015.02.006
    [5]CHEN Wei, ZHAN Yao, GAOZhen-xuan. Defects and Process Control in Production of Copper-Nickel Alloy Ingot Casting[J]. Development and Application of Materials, 2012, 27(6): 54-57. DOI: 10.19515/j.cnki.1003-1545.2012.06.013
    [6]ZHAO Bin. The Influence of Macroscopic Defects On the Critical Current of HTS Bi-2223 Tapes[J]. Development and Application of Materials, 2012, 27(3): 10-12. DOI: 10.19515/j.cnki.1003-1545.2012.03.003
    [7]ZHANG Jie, CHEN Ji-zhi, FENG Gang-xian. Research Progress of Effect of Porosity on the Fatigue Behavior in the Cast Alloy[J]. Development and Application of Materials, 2011, 26(5): 83-87. DOI: 10.19515/j.cnki.1003-1545.2011.05.020
    [8]SONG Xi-ning, LI Wen-ying, ZHANG Tian-hui. Welding Method Effect Research on Defects Type of Steel WDB620[J]. Development and Application of Materials, 2009, 24(6): 15-18. DOI: 10.19515/j.cnki.1003-1545.2009.06.004
    [9]Ma Jianmin, ‚Li Jingyong. Effect of Weld Defects on the Fatigue of Aluminum Alloy Joint[J]. Development and Application of Materials, 2003, 18(6): 31-34. DOI: 10.19515/j.cnki.1003-1545.2003.06.009
    [10]Fu Bufang. Analyses on Defects of Manual Molding RPUF[J]. Development and Application of Materials, 2002, 17(2): 31-33. DOI: 10.19515/j.cnki.1003-1545.2002.02.010

Catalog

    Article Metrics

    Article views (156) PDF downloads (16) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return