Citation: | SUN Xiang, LUO Zhibin. Research Progress of MnO2 as Supercapacitor Electrode Materials[J]. Development and Application of Materials, 2022, 37(4): 93-100. |
[1] |
VINNY R T, CHAITRA K, VENKATESH K, et al.An excellent cycle performance of asymmetric supercapacitor based on bristles like α-MnO2 nanoparticles grown on multiwalled carbon nanotubes[J].Journal of Power Sources, 2016, 309:212-220.
|
[2] |
DARAGHMEH A, HUSSAIN S, HAQ A U, et al.Carbon nanocomposite electrodes for electrical double layer capacitor[J].Journal of Energy Storage, 2020, 32:101798.
|
[3] |
王永芳,左宋林.含磷活性炭作为双电层电容器电极材料的电化学性能[J].物理化学学报, 2016, 32(2):481-492.
|
[4] |
刘睿懿,吴浩然,王政,等.碗型NiCo2O4纳米片簇应用于高性能不对称超级电容器电极材料[J].Science China Materials, 2020, 63(12):2456-2464.
|
[5] |
陈明华,刘威铎,范鹤,等.钼基化合物超级电容器电极材料研究进展[J].哈尔滨理工大学学报, 2020, 25(6):1-9.
|
[6] |
倪航,刘万能,毛志鹏,等.MgCo2O4超级电容器电极材料的制备及其电化学性能研究[J].江汉大学学报(自然科学版), 2020, 48(6):13-22.
|
[7] |
吴学亮,王延敏,李廷希.聚苯胺及其复合物作为超级电容器电极材料的研究进展[J].化学推进剂与高分子材料, 2020, 18(6):1-10.
|
[8] |
杨自涛,吴方棣,胡家朋,等.聚苯胺/N掺杂多孔碳复合材料的原位合成及其超级电容器性能[J].电子元件与材料, 2020, 39(11):16-20.
|
[9] |
王长城,胡红利,李龙,等.过渡金属氧化物在超级电容器中的研究进展[J].电力电容器与无功补偿, 2020, 41(5):81-87.
|
[10] |
张洵,李培,王政德,等.超级电容器用二维Ti3C2T<em>x过渡金属碳/氮化物材料的研究进展[J].过程工程学报, 2019, 19(1):35-44.
|
[11] |
王啸,田凌,龙霄,等.碳布上生长的开裂树皮状三元金属硫化物(NiCoMnS4)纳米结构用于高性能水系非对称超级电容器[J].Science China Materials, 2021, 64(7):1632-1641.
|
[12] |
朱基亮.超级电容器用金属层状双氢氧化物电极材料研究进展[J].四川师范大学学报(自然科学版), 2020, 43(3):285-296.
|
[13] |
李祥,罗咏梅,罗源.超级电容器RuO2及其金属氧化物复合电极材料的研究现状[J].广东化工, 2017, 44(15):144-145.
|
[14] |
MUSIL M, CHOI B, TSUTSUMI A.Morphology and electrochemical properties of α-, β-, γ-, and δ-MnO2 synthesized by redox method[J].Journal of the Electrochemical Society, 2015, 162(10):A2058-A2065.
|
[15] |
FITZPATRICK J, TYE F L.The manganese dioxide electrode part XI:an X-ray diffraction study of materials produced by H insertion into an EMD[J].Journal of Applied Electrochemistry, 1991, 21(2):130-135.
|
[16] |
CHENG S, YANG L F, CHEN D C, et al.Phase evolution of an alpha MnO2-based electrode for pseudo-capacitors probed by in operando Raman spectroscopy[J].Nano Energy, 2014, 9:161-167.
|
[17] |
HSU Y K, CHEN Y C, LIN Y G, et al.Reversible phase transformation of MnO2 nanosheets in an electrochemical capacitor investigated by in situ Raman spectroscopy[J].Chemical Communications (Cambridge, England), 2011, 47(4):1252-1254.
|
[18] |
YOUNG M J, HOLDER A M, GEORGE S M, et al.Charge storage in cation incorporated α-MnO2[J].Chemistry of Materials, 2015, 27(4):1172-1180.
|
[19] |
JI S H, CHODANKAR N R, JANG W S, et al.High mass loading of h-WO3 and α-MnO2 on flexible carbon cloth for high-energy aqueous asymmetric supercapacitor[J].Electrochimica Acta, 2019, 299:245-252.
|
[20] |
MA Z P, SHAO G J, FAN Y Q, et al.Construction of hierarchical α-MnO2 Nanowires@Ultrathin δ-MnO2 nanosheets core-shell nanostructure with excellent cycling stability for high-power asymmetric supercapacitor electrodes[J].ACS Applied Materials&Interfaces, 2016, 8(14):9050-9058.
|
[21] |
LI Z S, LIU Z H, LI D H, et al.Facile synthesis of α-MnO2 nanowires/spherical activated carbon composite for supercapacitor application in aqueous neutral electrolyte[J].Journal of Materials Science:Materials in Electronics, 2015, 26(1):353-359.
|
[22] |
WANG C L, LI F T, WANG Y N, et al.Facile synthesis of nanographene sheet hybrid α-MnO2 nanotube and nanoparticle as high performance electrode materials for supercapacitor[J].Journal of Alloys and Compounds, 2015, 634:12-18.
|
[23] |
PRASAD K R, MIURA N.Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors[J].Journal of Power Sources, 2004, 135(1-2):354-360.
|
[24] |
DONNE S W, HOLLENKAMP A F, JONES B C.Structure, morphology and electrochemical behaviour of manganese oxides prepared by controlled decomposition of permanganate[J].Journal of Power Sources, 2010, 195(1):367-373.
|
[25] |
SHEN H J, ZHANG Y, SONG X L, et al.Facile hydrothermal synthesis of actiniaria-shaped α-MnO2/activated carbon and its electrochemical performances of supercapacitor[J].Journal of Alloys and Compounds, 2019, 770:926-933.
|
[26] |
JAYACHANDRAN M, ROSE A, MAIYALAGAN T, et al.Effect of various aqueous electrolytes on the electrochemical performance of α-MnO2 nanorods as electrode materials for supercapacitor application[J].Electrochimica Acta, 2021, 366:137412.
|
[27] |
SU X H, YANG X F, YU L, et al.A facile one-pot hydrothermal synthesis of branched α-MnO2 nanorods for supercapacitor application[J].CrystEngComm, 2015, 17(31):5970-5977.
|
[28] |
SANKAR S, INAMDAR A I, IM H, et al.Template-free rapid sonochemical synthesis of spherical α-MnO2 nanoparticles for high-energy supercapacitor electrode[J].Ceramics International, 2018, 44(14):17514-17521.
|
[29] |
KIANI M A, KHANI H, MOHAMMADI N.MnO2/ordered mesoporous carbon nanocomposite for electrochemical supercapacitor[J].Journal of Solid State Electrochemistry, 2014, 18(4):1117-1125.
|
[30] |
SUN L D, LI N, ZHANG S D, et al.Nitrogen-containing porous carbon/α-MnO2 nanowires composite electrode towards supercapacitor applications[J].Journal of Alloys and Compounds, 2019, 789:910-918.
|
[31] |
SHIVAKUMARA S, MUNICHANDRAIAH N.In-situ preparation of nanostructured α-MnO2/polypyrrole hybrid composite electrode materials for high performance supercapacitor[J].Journal of Alloys and Compounds, 2019, 787:1044-1050.
|
[32] |
PURTY B, CHOUDHARY R B, BISWAS A, et al.Chemically grown mesoporous f-CNT/α-MnO2/PIn nanocomposites as electrode materials for supercapacitor application[J].Polymer Bulletin, 2019, 76(4):1619-1640.
|
[33] |
黎阳,谢华清,李靖.水热合成制备Al掺杂α-MnO2纳米管及其超级电容器电化学性能(英文)[J].物理化学学报, 2015, 31(4):693-699.
|
[34] |
王丰梅,徐光伟,金成昌.掺铋α-MnO2纳米棒的合成及超电容性能[J].高等学校化学学报, 2018, 39(3):530-536.
|
[35] |
MONDAL D, DAS S, PAUL B K, et al.Size engineered Cu-doped α-MnO2 nanoparticles for exaggerated photocatalytic activity and energy storage application[J].Materials Research Bulletin, 2019, 115:159-169.
|
[36] |
LIN H, ZHANG M, MIAO J, et al.Synthesis and electrochemical properties of Er/α-MnO2 microspheres for supercapacitors application[J].Ionics, 2019, 25(8):3867-3873.
|
[37] |
MONDAL D, PAUL B K, BHATTACHARYA D, et al.Copper-doped α-MnO2 nano-sphere:metamaterial for enhanced supercapacitor and microwave shielding applications[J].Journal of Materials Chemistry C, 2021, 9(15):5132-5147.
|
[38] |
CHEN D C, DING D, LI X X, et al.Probing the charge storage mechanism of a pseudocapacitive MnO2 electrode using in operando Raman spectroscopy[J].Chemistry of Materials, 2015, 27(19):6608-6619.
|
[39] |
YANG L F, CHENG S, JI X, et al.Investigations into the origin of pseudocapacitive behavior of Mn3O4 electrodes using in operando Raman spectroscopy[J].Journal of Materials Chemistry A, 2015, 3(14):7338-7344.
|
[40] |
YANG L F, CHENG S, WANG J, et al.Investigation into the origin of high stability of δ-MnO2 pseudo-capacitive electrode using operando Raman spectroscopy[J].Nano Energy, 2016, 30:293-302.
|
[41] |
DONG R T, YE Q L, KUANG L L, et al.Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transition-metal ions[J].ACS Applied Materials&Interfaces, 2013, 5(19):9508-9516.
|
[42] |
YAO M H, JI X, CHOU T F, et al.Simple and cost-effective approach to dramatically enhance the durability and capability of a layered δ-MnO2 based electrode for pseudocapacitors:a practical electrochemical test and mechanistic revealing[J].ACS Applied Energy Materials, 2019, 2(4):2743-2750.
|
[43] |
ZHANG Q Z, ZHANG D, MIAO Z C, et al.Research progress in MnO2-carbon based supercapacitor electrode materials[J].Small, 2018, 14(24):1702883.
|
[44] |
RADHAMANI A V, SURENDRA M K, RAO M S R.Zn doped δ-MnO2 nano flakes:an efficient electrode material for aqueous and solid state asymmetric supercapacitors[J].Applied Surface Science, 2018, 450:209-218.
|
[45] |
WANG J F, YANG H P, SUN Q Q, et al.Synthesis of δ-MnO2/C assisted with carbon sheets by directly carbonizing from corn stalk for high-performance supercapacitor[J].Materials Letters, 2021, 285:129116.
|
[46] |
SHEN H J, KONG X D, ZHANG P, et al.In-situ hydrothermal synthesis of δ-MnO2/soybean pod carbon and its high performance application on supercapacitor[J].Journal of Alloys and Compounds, 2021, 853:157357.
|
[47] |
WU P, CHENG S, YANG L F, et al.Synthesis and characterization of self-standing and highly flexible δ-MnO2@CNTs/CNTs composite films for direct use of supercapacitor electrodes[J].ACS Applied Materials&Interfaces, 2016, 8(36):23721-23728.
|
[48] |
ZHANG J Y, YANG X F, HE Y B, et al.δ-MnO2/holey graphene hybrid fiber for all-solid-state supercapacitor[J].Journal of Materials Chemistry A, 2016, 4(23):9088-9096.
|
[49] |
TANG L J, JI X, LUO H W, et al.Achievement of high durability of δ-MnO2 based pseudocapacitive electrode enabled by Zn doping induced reattachment[J].Journal of Alloys and Compounds, 2020, 834:155117.
|
[50] |
ZHAO S Q, LIU T M, JAVED M S, et al.Rational synthesis of Cu-doped porous δ-MnO2 microsphere for high performance supercapacitor applications[J].Electrochimica Acta, 2016, 191:716-723.
|
[51] |
WAN J, JI P Y, LI B X, et al.Enhanced electrochemical performance in an aluminium doped δ-MnO2supercapacitor cathode:experimental and theoretical investigations[J].Chemical Communications, 2022, 58(4):589-592.
|