Citation: | YAO Le, HOU Tingping, FENG Yong, TAN Xinyang, CHEN Yujing, WU Kaiming. Research Progress of Solid Phase Transformations in Steel Induced by Strong Magnetic Fields[J]. Development and Application of Materials, 2025, 40(1): 34-43. |
[1] |
RODRIGUES P C M, PERELOMA E V, SANTOS D B. Mechanical properities of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling[J]. Materials Science and Engineering: A, 2000, 283(1-2): 136-143.
|
[2] |
YOOZBASHI M N, YAZDANI S, WANG T S. Design of a new nanostructured, high-Si bainitic steel with lower cost production[J]. Materials & Design, 2011, 32(6): 3248-3253.
|
[3] |
WATANABE K, MOTOKAWA M. Materials science in static high magnetic fields[M]. Berlin: Springer, 2002: 3-10.
|
[4] |
ZENER C. Impact of magnetism upon metallurgy[J]. JOM, 1955, 7(5): 619-630.
|
[5] |
WU Y, LI H H, ZHANG Z W, et al. Effect of high magnetic field on carbide precipitation in W6Mo5Cr4V3 high-speed steel during low-temperature tempering[J]. International Journal of Materials Research, 2016, 107(4): 356-361.
|
[6] |
HOU T P, WU K M. Alloy carbide precipitation in tempered 2.25Cr-Mo steel under high magnetic field[J]. Acta Materialia, 2013, 61(6): 2016-2024.
|
[7] |
LIU X J, LU Y, FANG Y M, et al. Effects of external magnetic field on the diffusion coefficient and kinetics of phase transformation in pure Fe and Fe-C alloys[J]. Calphad, 2011, 35(1): 66-71.
|
[8] |
XIA Z X, ZHANG C, LAN H, et al. Effect of magnetic field on interfacial energy and precipitation behavior of carbides in reduced activation steels[J]. Materials Letters, 2011, 65(6): 937-939.
|
[9] |
ZHAO M, HU J H, ZOU J B, et al. Characteristics of a magnetic fluid under an orthogonal alternating magnetic field[J]. Journal of Magnetism and Magnetic Materials, 2016, 409: 66-70.
|
[10] |
张东, 侯廷平,郑一航, 等. 强磁场下钢中析出相演变规律研究进展[J]. 铸造技术, 2022, 43(8): 615-624.
|
[11] |
侯廷平. 强磁场条件下耐热钢中合金碳化物的析出行为[D]. 武汉: 武汉科技大学, 2012.
|
[12] |
LI P W, CHEN W M, LIU W, et al. Thermodynamic phase formation of morphology and size controlled Ni nanochains by temperature and magnetic field[J]. The Journal of Physical Chemistry C, 2010, 114(17): 7721-7726.
|
[13] |
WATANABE T, TSUREKAWA S, ZHAO X, et al. A new challenge: grain boundary engineering for advanced materials by magnetic field application[J]. Journal of Materials Science, 2006, 41(23): 7747-7759.
|
[14] |
权薛玲, 侯廷平, 张东, 等. 强磁场对Fe-0.1C-2W钢回火过程微观组织的影响[J]. 武汉科技大学学报, 2022, 45(6): 401-408.
|
[15] |
镇锦煌, 侯廷平, 刘杨妮, 等. 强磁场下贝氏体相变的热力学机制研究[J]. 武汉科技大学学报, 2023, 46(2): 81-86.
|
[16] |
冯勇, 侯廷平, 张东, 等. 强磁场下钢中珠光体相变的研究现状及展望[J]. 铸造技术, 2022, 43(9): 755-760.
|
[17] |
廖已莹, 侯廷平, 杨雨豪, 等. 磁场下碳化物析出的热力学机制[J]. 原子与分子物理学报, 2025, 42(4): 121-130.
|
[18] |
XU H, SI S Y, LI Y P, et al. The effect of Laves phase on heavy-ion radiation response of Nb-containing FeCrAl alloy for accident-tolerant fuel cladding[J]. Fundamental Research, 2022, 2(3): 437-446.
|
[19] |
郭笑林, 段海明. 3d过渡金属掺杂对Cd12O12纳米线电子和磁性能的影响[J]. 原子与分子物理学报, 2021, 38(2): 67-73.
|
[20] |
宛德福, 马兴隆. 磁性物理学[M]. 修订本. 北京: 电子工业出版社, 1999.
|
[21] |
PERELOMA E, EDMONDS D V. Phase transfor-mations in steels[M].Cambridge: Woodhead Publishing Limited, 2012.
|
[22] |
ZHANG Y D, HE C S, ZHAO X, et al. New microstructural features occurring during transformation from austenite to ferrite under the kinetic influence of magnetic field in a medium carbon steel[J]. Journal of Magnetism and Magnetic Materials, 2004, 284: 287-293.
|
[23] |
TITENKO A, DEMCHENKO L. Effect of annealing in magnetic field on ferromagnetic nanoparticle formation in Cu-Al-Mn alloy with induced martensite transformation[J]. Nanoscale Research Letters, 2016, 11(1): 237.
|
[24] |
KIRVOGLAZ M,SADOVSKY V D.Effect of strong magnetic fields on phase transformations[J].Fizika Metallov I Metallovedenie, 1964, 18(4):502-506.
|
[25] |
KUDRYAVTSEV Y V, UVAROV N V, PEREKOS A E, et al. Effect of the temperature and magnetic field induced martensitic transformation in bulk Fe45Mn26-Ga29 alloy on its electronic structure and physical properties[J]. Intermetallics, 2019, 109: 85-90.
|
[26] |
MARTIN D S, VAN DIJK N H, JIMÉNEZ-MELERO E, et al. Real-time martensitic transformation kinetics in maraging steel under high magnetic fields[J]. Materials Science and Engineering: A, 2010, 527(20): 5241-5245.
|
[27] |
OMORI T, WATANABE K, UMETSU R Y, et al. Martensitic transformation and magnetic field-induced strain in Fe-Mn-Ga shape memory alloy[J]. Applied Physics Letters, 2009, 95(8): 082508.
|
[28] |
KAKESHITA T, SABURI T, KINDO K, et al. Effect of magnetic field and hydrostatic pressure on martensitic transformation and its kinetics[J]. Japanese Journal of Applied Physics, 1997, 36(12R): 7083.
|
[29] |
MARTIN D S, VAN D N H, BRVCK E, et al. The isothermal martensite formation in a maraging steel: a magnetic study[J]. Materials Science and Engineering: A, 2008, 481: 757-761.
|
[30] |
WANG F, QIAN D S, HUA L, et al. Effect of high magnetic field on the microstructure evolution and mechanical properties of M50 bearing steel during tempering[J]. Materials Science and Engineering: A, 2020, 771: 138623.
|
[31] |
KAKESHITA T, KUROIWA K, SHIMIZU K, et al. Effect of magnetic fields on athermal and isothermal martensitic transformations in Fe-Ni-Mn alloys[J]. Materials Transactions, JIM, 1993, 34(5): 415-422.
|
[32] |
Bhadeshia H K D H. Nanostructured bainite[J]. Proceedings of the Royal Society A: Mathematical, Phy-sical and Engineering Sciences, 2010, 466(2113): 3-18.
|
[33] |
GARCIA-MATEO C, CABALLERO F G, BHADE-SHIA H K D H. Acceleration of low-temperature bainite[J]. ISIJ International, 2003, 43(11): 1821-1825.
|
[34] |
GARCÍA-MATEO C, CABALLERO F G. The role of retained austenite on tensile properties of steels with bainitic microstructures[J]. Materials Transactions, 2005, 46(8): 1839-1846.
|
[35] |
DONG B Q, HOU T P, WU K M, et al. Low-tempe-rature nanostructured bainite transformation: the effect of magnetic field[J]. Materials Letters, 2019, 240: 66-68.
|
[36] |
OHTSUKA H. Effects of a high magnetic field on bainitic transformation in Fe-based alloys[J]. Materials Science and Engineering: A, 2006, 438: 136-139.
|
[37] |
OHTSUKA H. Effects of a high magnetic field on bainitic and martensitic transformations in steels[J]. Materials Transactions, 2007, 48(11): 2851-2854.
|
[38] |
NAWAZ B, LONG X Y, YANG Z N, et al. Effect of magnetic field on microstructure and mechanical properties of austempered 70Si3MnCr steel[J]. Materials Science and Engineering: A, 2019, 759: 11-18.
|
[39] |
董宝奇. 低温贝氏体钢的力学性能及其强磁场下的相变[D]. 武汉: 武汉科技大学, 2019.
|
[40] |
陈健豪, 周晓玲, 孟兰, 等. 强磁场下Fe-0.47C-2.3Si-3.2Mn钢的高温等温相变动力学[J]. 材料热处理学报, 2014, 35(5): 119-122.
|
[41] |
MITSUI Y, IKEHARA Y, TAKAHASHI K, et al. Fe-Fe3C binary phase diagram in high magnetic fields[J]. Journal of Alloys and Compounds, 2015, 632: 251-255.
|
[42] |
周晓玲.磁场下中碳硅锰钢的扩散型相变研究[D]. 昆明:昆明理工大学, 2009.
|
[43] |
刘雯, 周晓玲, 张希俊, 等. 强磁场对硅锰铸钢等温珠光体粒化的影响[J]. 材料热处理学报, 2012, 33(4): 50-54.
|
[44] |
冯路路. 合金元素及强磁场对高碳钢珠光体相变及微观结构的影响[D]. 武汉: 武汉科技大学, 2021.
|
[45] |
JARAMILLO R A, BABU S S, LUDTKA G M, et al. Effect of 30 T magnetic field on transformations in a novel bainitic steel[J]. Scripta Materialia, 2005, 52(6): 461-466.
|
[46] |
ZHANG Y, HE C, ZHAO X, et al. A new approach for rapid annealing of medium carbon steels[J]. Advanced Engineering Materials, 2004, 6(5): 310-313.
|
[47] |
吴存有, 李廷举, 温斌, 等. 强磁场对球墨铸铁退火处理的影响[J]. 大连理工大学学报, 2004, 44(4): 514-517.
|
[48] |
FENG Y, ZHANG D, HOU T P, et al. An integrated exploration from microstructure to mechanics in austenite to pearlite transformation of high carbon steel under high magnetic fields[J]. Journal of Materials Research and Technology, 2024, 32: 3302-3309.
|
[49] |
李钊, 吴润. 钢中强化析出相的理论基础及其应用研究进展[J]. 材料导报, 2020, 34(S2): 412-417.
|
[50] |
CHONG X Y, JIANG Y H, FENG J. Exploring the intrinsic ductile metastable Fe-C compounds: Complex chemical bonds, anisotropic elasticity and variable thermal expansion[J]. Journal of Alloys and Compounds, 2018, 745: 196-211.
|
[51] |
FANG C M, VAN HUIS M A, SLUITER M H F, et al. Stability, structure and electronic properties of γ-Fe23C6 from first-principles theory[J]. Acta Materialia, 2010, 58(8): 2968-2977.
|
[52] |
LIU X J, FANG Y M, WANG C P, et al. Effect of external magnetic field on thermodynamic properties and phase transitions in Fe-based alloys[J]. Journal of Alloys and Compounds, 2008, 459(1-2): 169-173.
|
[53] |
HOU T P, LI Z H, WU K M, et al. Role of external magnetic fields in determining the thermodynamic properties of iron carbides in steel[J]. Acta Materialia, 2019, 167: 71-79.
|
[54] |
HOU T P, LI Y, WU K M, et al. Magnetic-field-induced magnetism and thermal stability of carbides Fe6-xMo<em>xC in molybdenum-containing steels[J]. Acta Materialia, 2016, 102: 24-31.
|
[55] |
HOU T P, LI Y, ZHANG J J, et al. Effect of magnetic field on the carbide precipitation during tempering of a molybdenum-containing steel[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(5): 857-861.
|
[56] |
WU G H, HOU T P, WU K M, et al. Influence of high magnetic field on carbides and the dislocation density during tempering of high chromium-containing steel[J]. Journal of Magnetism and Magnetic Materials, 2019, 479: 43-49.
|
[57] |
ZHANG Y D, GEY N, HE C S, et al. High temperature tempering behaviors in a structural steel under high magnetic field[J]. Acta Materialia, 2004, 52(12): 3467-3474.
|
[58] |
ZHENG P, HOU T P, ZHANG D, et al. Determina-tion of the site preference on the structure, magnetism and mechanical anisotropy properties of Mo-containing alloy carbide M6C(M=Fe, Mo)[J]. Journal of Phy-sics: Condensed Matter, 2022, 34(28): 285703.
|
[59] |
ZHANG Y D, ZHAO X, BOZZOLO N, et al. Low temperature tempering of a medium carbon steel in high magnetic field[J]. ISIJ International, 2005, 45(6): 913-917.
|
[60] |
周珍妮, 侯廷平, 张国宏, 等. 强磁场条件下中碳低合金钢中碳化物的析出[J]. 材料工程, 2009, 37(7): 5-8.
|
[61] |
ZHOU Z N, WU K M. Molybdenum carbide precipitation in an Fe-C-Mo alloy under a high magnetic field[J]. ScriptaMaterialia, 2009, 61(7): 670-673.
|
[62] |
CHOI J K, OHTSUKA H, XU Y, et al. Effects of a strong magnetic field on the phase stability of plain carbon steels[J]. Scripta Materialia, 2000, 43(3): 221-226.
|
[63] |
WANG K, YAN C J, YUAN C H, et al. Progress in research on diffusional phase transformations of Fe-C alloys under high magnetic fields[J]. Journal of Iron and Steel Research International, 2022, 29(5): 707-718.
|
[64] |
HOU M D, LI K J, LI X G, et al. Effects of pulsed magnetic fields of different intensities on dislocation density, residual stress, and hardness of Cr4Mo4V steel[J]. Crystals, 2020, 10(2): 115.
|
[65] |
CHEN Z Y, LI H, LIN W H, et al. Synergistic improvement of strength and ductility by high magnetic field assisted intercritical annealing in lightweight medium Mn steel[J]. Materials Science and Engineering: A, 2024, 911: 146933.
|
[1] | CHEN Chuan, LI Chao, LIU Wei, GE Zhengfu, MA Peng, ZHANG Wentao, LI Meng, ZHANG Chi, LI Yong, LAN Xianhui, ZHOU Tao. Development of Customized Helium-Free Superconducting Magnet[J]. Development and Application of Materials, 2025, 40(1): 61-67. |
[2] | HUANG Chenglin, SHUAI Sansan, WANG Zekun, WANG Jiang, REN Zhongming. Magnetic-Field-Assisted Preparation of Serrated Grain Boundaries of Semi-solid Al-Cu Hypoeutectic Alloy[J]. Development and Application of Materials, 2025, 40(1): 25-33. |
[3] | BU Fan, NIE Shuai, LIU Haoxiang, LIU Xudong, HE Yixuan, WANG Jun. Effect of Heat Treatment Assisted with Magnetic Field on Microstructure and Magnetic Properties of Co-Ni-Al Alloy[J]. Development and Application of Materials, 2025, 40(1): 1-12. |
[4] | YANG Jun, HUANG Dongya, WANG Yue, MO Manman, LIN Baichun, YANG Shu. Research and Application Progress on Production of Anisotropic NdFeB Magnetic Powder by HDDR Process[J]. Development and Application of Materials, 2023, 38(2): 97-108. |
[5] | XU Qiang, QI Haixia, CHEN Kaifeng, ZHANG Lili. Study on Surface Treatment Process and Protective Coating System Design of Low-magnetic Stainless Steel[J]. Development and Application of Materials, 2021, 36(6): 31-35. |
[6] | LIU Wen, DANG Shihong, ZHANG Xiaofen, HUAI Ni. Influence of High Magnetic Field on Isothermal Pearlite Transformation in Si-Mn Cast Steel at Temperature Around A1 Point[J]. Development and Application of Materials, 2017, 32(1): 48-53. DOI: 10.19515/j.cnki.1003-1545.2017.01.009 |
[7] | WANG Bing, REN Weiwei, WANG Wenfei. Molecular Simulation Analysis for the Influence of Hydrostatic Pressure on the Free Volume Fraction of Viscoelastic Damping Materials[J]. Development and Application of Materials, 2016, 31(6): 1-5. DOI: 10.19515/j.cnki.1003-1545.2016.06.001 |
[8] | LI Ai-jun, SHEN Xiao-fang, YUE Cai-xia. Magnetic Refrigeration Properties of Sample La0.71Ca0.2Sr0.06MnO3[J]. Development and Application of Materials, 2014, 29(4): 73-76. DOI: 10.19515/j.cnki.1003-1545.2014.04.015 |
[9] | ZHANG Liang, YAN Hua, YU Rong-sheng, CHEN Shu-lian, ZHANG Jiang. A Review of Phase Change Materials:Development and Application in Buiding Energy Saving[J]. Development and Application of Materials, 2010, 25(1): 69-73. DOI: 10.19515/j.cnki.1003-1545.2010.01.019 |
[10] | JIN Dan, SUN Ke-wei. Magnetic Characteristics Research of FeSiAl Magnetic Powder Core[J]. Development and Application of Materials, 2009, 24(1): 24-25,29. DOI: 10.19515/j.cnki.1003-1545.2009.01.007 |