CHAI Xiyang, MU Xiaobiao, LUO Xiaobing, CHAI Feng, XU Kuilong. Comparative Study on Fatigue Properties of Al-Al-steel and Al-Ti-steel Clad Plates[J]. Development and Application of Materials, 2022, 37(6): 32-38.
Citation: CHAI Xiyang, MU Xiaobiao, LUO Xiaobing, CHAI Feng, XU Kuilong. Comparative Study on Fatigue Properties of Al-Al-steel and Al-Ti-steel Clad Plates[J]. Development and Application of Materials, 2022, 37(6): 32-38.

Comparative Study on Fatigue Properties of Al-Al-steel and Al-Ti-steel Clad Plates

More Information
  • Received Date: May 23, 2022
  • Available Online: January 11, 2023
  • The axial tensile-compression fatigue tests are carried out on Al-Al-steel and Al-Ti-steel clad plates, aiming at the material selection and node design requirements of Al-steel transition joints for hull structures. The fatigue limit and S-N curve of the material are tested, and the fatigue fracture behavior and fracture position of the two Al-steel transition joints compared and analyzed. The results show that the fatigue limit of the Al-Al-steel clad plate is 28.8 MPa and that of the Al-Ti-steel clad plate is 55.0 MPa under the condition of the stress ratio of -1 and the axial tension-compression load. Under the condition of similar fatigue life, the latter can withstand greater stress than the former, and the resistance to fatigue expansion is stronger. The fatigue fracture of the Al-Al-steel clad plate mainly occurs in the 1060 pure aluminum layer, and the fatigue fracture of the Al-Ti-steel clad plate occurs in the 3003 aluminum alloy layer. The fatigue fracture position is closely related to the tensile strength of the Al-steel joint material.
  • [1]
    闫晋辉, 刘金涛, 王显正. 国内船用铝-钢爆炸复合过渡接头应用现状及展望[J]. 材料开发与应用, 2020, 35(2):75-81.
    [2]
    宋军, 张文平, 华先锋. 船用铝钢复合材制备工艺研究[J]. 兵器装备工程学报, 2016, 37(3):129-131.
    [3]
    张伟, 王东涛, 陈斌, 等. 某型船用铝合金-纯铝-钢复合过渡接头界面开裂微观分析[J]. 材料开发与应用, 2017, 32(4):89-94.
    [4]
    董琴. 基于断裂力学的船舶加筋板结构低周疲劳研究[D]. 武汉:武汉理工大学, 2014.
    [5]
    吴富民. 结构疲劳强度[M]. 西安:西北工业大学出版社, 1985.
    [6]
    王小华, 陆浩华, 刘金涛, 等. 舰船用钛-钢复合过渡接头焊接态疲劳性能试验研究[J]. 材料开发与应用, 2017, 32(4):74-80.
    [7]
    李敬勇, 赵路遇. 船舶结构用铝-钛-钢复合过渡接头疲劳性能研究[J]. 船舶工程, 1997, 19(6):35-37.
    [8]
    黄健, 刘金涛, 王小华, 等. 某型船用铝-钢复合过渡接头焊接态疲劳性能试验研究[J]. 材料开发与应用, 2018, 33(1):54-58.
    [9]
    KAROLCZUK A. Fatigue phenomena in explosively w-elded steel-titanium clad components subjected to push-pull loading[J]. International Journal of Fatigue, 2013, 48:101-108.
    [10]
    BECKER N, GAUTHIER D, VIDAL E E, et al. Fatigue properties of steel to aluminum transition joints produced by explosion welding[J]. International Journal of Fatigue, 2020, 139:105736.
    [11]
    SPRINGER H, KOSTKA A, PAYTON E J, et al. On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys[J]. Acta Materialia, 2011, 59(4):1586-1600.
    [12]
    FANG Z H, SHI C G, SUN Z R, et al. Influence of interlayer technique on microstructure and mechanical properties of Ti/Al cladding plate manufactured via explosive welding[J]. Materials Research Express, 2019, 6(10):1065f9.
  • Related Articles

    [1]HAO Xiaolei, HU Shujuan, ZHENG Genggeng, WANG Fei. Effect of Forging Temperature on Microstructure and Mechanical Properties of Nb521 Alloy Bar[J]. Development and Application of Materials, 2023, 38(6): 80-85.
    [2]HOU Lili, GUO Qiang, YAO Yuhong, LIU Jiangnan. Microstructure and Mechanical Properties of Annealed CoFeNiCrMnBx High Entropy Alloy[J]. Development and Application of Materials, 2023, 38(2): 44-48.
    [3]WANG Yuan, DONG Jian, GUAN Yulong, ZHAO Baojie, ZHANG Haishen. Effect of Process on Microstructure and Mechanical Properties of TA5 Alloy Sheets[J]. Development and Application of Materials, 2022, 37(4): 61-64.
    [4]YANG Yong, WANG Binbin, LI Yanjie, LUO Liangshun, HUANG Haiguang, WANG Liang, SU Yanqing, GUO Jingjie, FU Hengzhi. Impact of Trace Cu Addition on Microstructure, Mechanical Property and Corrosion Behavior of TA10 Alloy[J]. Development and Application of Materials, 2022, 37(3): 5-12,20.
    [5]WU Xiaofei, DUAN Mengqiang, WU Yukun, WANG Qi, JIANG Peng. Effect of Heat Treatment on Microstructure and Mechanical Properties of Ti5211 Plates[J]. Development and Application of Materials, 2020, 35(4): 11-13,23.
    [6]HUANG Wei, WANG Shaogang, LI Lize, JIN Yang. Laser Beam Welding of Titanium Alloy and Microstructure and Mechanical Properties of Welded Joint[J]. Development and Application of Materials, 2019, 34(2): 20-27. DOI: 10.19515/j.cnki.1003-1545.2019.02.004
    [7]GAO Ling-qing, LI Hui, HOU Shi-zhong. Effects of Strain Rate and Temperature on the Mechanical Properties of 10NiCrMo Hull Steel[J]. Development and Application of Materials, 2013, 28(6): 9-14. DOI: 10.19515/j.cnki.1003-1545.2013.06.003
    [8]GUAN Jian-dong, KANG Yong-lin, DU Xin, ZHENG Yue-qiang. Influence of Coiling Temperature and Total Cold Rolling Reduction Rate on Mechanical Properties of SPHD Steel[J]. Development and Application of Materials, 2009, 24(1): 39-42,46. DOI: 10.19515/j.cnki.1003-1545.2009.01.012
    [9]KONG Hong-yu, ZHOU Hao, YI Chuan-bao. Influence of Deoxidizer on Mechanical Property of Deposited Metal of Electrode[J]. Development and Application of Materials, 2007, 22(5): 7-10. DOI: 10.19515/j.cnki.1003-1545.2007.05.003
    [10]Lou Guantao, Sun Jianke, Yang Xuedong, Chen Liping, Wang Bo, Chen Chunhe. Effects of Al and Mo on Mechanical Properties of Cast Titanium Alloys[J]. Development and Application of Materials, 2003, 18(4): 32-35. DOI: 10.19515/j.cnki.1003-1545.2003.04.010

Catalog

    Article Metrics

    Article views (238) PDF downloads (40) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return