Citation: | BU Fan, NIE Shuai, LIU Haoxiang, LIU Xudong, HE Yixuan, WANG Jun. Effect of Heat Treatment Assisted with Magnetic Field on Microstructure and Magnetic Properties of Co-Ni-Al Alloy[J]. Development and Application of Materials, 2025, 40(1): 1-12. |
[1] |
王晓宏, 张博明, 杜善义, 等. 不同初始组织结构的形状记忆合金性能及参数的研究[J]. 材料开发与应用, 2009, 24(1): 12-15.
|
[2] |
YILDIRIM M, CANDAN Z. Smart materials: The next generation in science and engineering[J]. Materials Today: Proceedings, 2023.
|
[3] |
MOHD JANI J, LEARY M, SUBIC A, et al. A review of shape memory alloy research, applications and opportunities[J]. Materials & Design, 2014, 56: 1078-1113.
|
[4] |
罗丰华, 陈嘉砚, 刘浪飞, 等. Co41Ni33Al26合金冷轧带材相变与阻尼能力[J].材料开发与应用, 2006, 21(2):9-13+23.
|
[5] |
MAZIARZ W. Structure changes of Co-Ni-Al ferromagnetic shape memory alloys after vacuum annealing and hot rolling[J]. Journal of Alloys and Compounds, 2008, 448(1-2): 223-226.
|
[6] |
FUJITA A, MORITO H, KUDO T, et al. Magnetocrystalline anisotropy in a single-variant co-Ni-Al ferromagnetic shape memory alloy[J]. Materials Transactions, 2003, 44(10): 2180-2183.
|
[7] |
OIKAWA K, WULFF L, IIJIMA T, et al. Promising ferromagnetic Ni-Co-Al shape memory alloy system[J]. Applied Physics Letters, 2001, 79(20): 3290-3292.
|
[8] |
OIKAWA K, OTA T, GEJIMA F, et al. Phase equilibria and phase transformations in new B2-type ferromagnetic shape memory alloys of Co-Ni-Ga and Co-Ni-Al systems[J]. Materials Transactions, 2001, 42(11): 2472-2475.
|
[9] |
HOSSAIN M S, GOKUL P, PAL B, et al. Correlation of dynamic elastic properties of a heat-treated CoNiAl alloy system with its microstructural changes[J]. Shape Memory and Superelasticity, 2019, 5(4): 468-475.
|
[10] |
DAR R D, YAN H X, CHEN Y. Grain boundary engineering of Co-Ni-Al, Cu-Zn-Al, and Cu-Al-Ni shape memory alloys by intergranular precipitation of a ductile solid solution phase[J]. Scripta Materialia, 2016, 115: 113-117.
|
[11] |
LIU J, ZHENG H X, HUANG Y L, et al. Microstructure and magnetic field induced strain of directionally solidified ferromagnetic shape memory CoNiAl alloys[J]. Scripta Materialia, 2005, 53(1): 29-33.
|
[12] |
JU J, YAN C, YANG L. Microstructure and machine properties of Co37+xNi34-xAl29(x=0, 1, 2, 3) ferromagnetic shape memory alloys[C]. Dalias: DEStech Transactions on Materials Science and Engineering, 2017.
|
[13] |
王涵,史博文,牛建民, 等. 柱状晶Cu-Al-Mn形状记忆合金超弹性各向异性参数研究及数值计算[J].材料开发与应用, 2022, 37(2): 1-9.
|
[14] |
CAI H, LIN W H, FENG M L, et al. Review on eutectic-type alloys solidified under static magnetic field[J]. Crystals, 2023, 13(6): 891.
|
[15] |
刘雯, 党世红, 张小粉, 等. 强磁场对硅锰铸钢于A1点附近等温珠光体相变的影响[J]. 材料开发与应用, 2017, 32(1): 48-53.
|
[16] |
HUANG C L, SHUAI S S, WANG P C, et al. The effect of static magnetic field on solid-liquid interfacial free energy of Al-Cu alloy system[J]. Scripta Materialia, 2020, 187: 232-236.
|
[17] |
FAN L J, ZHONG Y B, XU Y L, et al. Promoted diffusion mechanism of Fe2.7wt.%Si-Fe10wt.%Si couples under magnetic field by atomic-scale observations[J]. Scientific Reports, 2019, 9: 19920.
|
[18] |
帅三三, 温烁凯, 郭锐, 等. 磁场下金属凝固过程形核行为的研究现状[J]. 铸造技术, 2022, 43(9): 699-712.
|
[19] |
JIE J C, YUE S P, LIU J, et al. Revealing the mechanisms for the nucleation and formation of equiaxed grains in commercial purity aluminum by fluid-solid coupling induced by a pulsed magnetic field[J]. Acta Materialia, 2021, 208: 116747.
|
[20] |
GHAI V, PASHAZADEH S, RUAN H Z, et al. Orientation of graphene nanosheets in magnetic fields[J]. Progress in Materials Science, 2024, 143: 101251.
|
[21] |
WANG J, HE Y X, LI J S, et al. Experimental platform for solidification and in situ magnetization measurement of undercooled melt under strong magnetic field[J]. 2015, 86(2): 025102.
|
[22] |
LU J B, SHI H, SEDLAKOVA-IGNACOVA S, et al. Microstructure and precipitates in annealed Co38Ni33-Al29 ferromagnetic shape memory alloy[J]. Journal of Alloys and Compounds, 2013, 572: 5-10.
|
[23] |
KAINUMA R, ISE M, JIA C C, et al. Phase equilibria and microstructural control in the Ni-Co-Al system[J]. Intermetallics, 1996, 4: S151-S158.
|
[24] |
LIU J, LI J G. Microstructure, shape memory effect and mechanical properties of rapidly solidified Co-Ni-Al magnetic shape memory alloys[J]. Materials Science and Engineering: A, 2007, 454: 423-432.
|
[25] |
SCHNEIDER C M, BRESSLER P, SCHUSTER P, et al. Curie temperature of ultrathin films of fcc-cobalt epitaxially grown on atomically flat Cu(100) surfaces[J]. Physical Review Letters, 1990, 64(9): 1059-1062.
|
[26] |
OMORI T, SUTOU Y, OIKAWA K, et al. Shape memory and magnetic properties of Co-Al ferromagnetic shape memory alloys[J]. Materials Science and Engineering: A, 2006, 438: 1045-1049.
|
[27] |
ZENG Y P, MITTNACHT T, WERNER W, et al. Gibbs energy and phase-field modeling of ferromagnetic ferrite (α)→ paramagnetic austenite (γ) transformation in Fe-C alloys under an external magnetic field[J]. Acta Materialia, 2022, 225: 117595.
|
[28] |
LI Z F, DONG J, ZENG X Q, et al. Influence of strong static magnetic field on intermediate phase growth in Mg-Al diffusion couple[J]. Journal of Alloys and Compounds, 2007, 440(1-2): 132-136.
|
[29] |
REN X, CHEN G Q, ZHOU W L, et al. Effect of high magnetic field on intermetallic phase growth in Ni-Al diffusion couples[J]. Journal of Alloys and Compounds, 2009, 472(1-2): 525-529.
|
[30] |
YUAN Z J, REN Z M, LI C J, et al. Effect of high magnetic field on diffusion behavior of aluminum in Ni-Al alloy[J]. Materials Letters, 2013, 108: 340-342.
|
[31] |
YOUDELIS W V, CAHOON J R. Diffusion in a magnetic field[J]. Canadian Journal of Physics, 1970, 48(6): 805-808.
|
[32] |
SHIRSATH S E, LIU X X, YASUKAWA Y, et al. Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film[J]. Scientific Reports, 2016, 6: 30074.
|
[33] |
YAN Y J, WANG J, WEI C, et al. Determination of phase transformation kinetics under magnetic fields: modeling based on magnetization and application in a Fe-1 wt.%Cu alloy[J]. 2024, 124(22): 222402.
|
[34] |
姜寿亭, 李卫. 凝聚态磁性物理[M]. 北京: 科学出版社, 2003.
|
[35] |
GEORGIANA B, OVIDIU F C. 1-Fundamentals of magnetism [M]//JITENDRA P S, KEUN H C, RAMESH C S, et al. Ferrite Nanostructured Magnetic Materials. UK: Woodhead Publishing, 2023, 3-15.
|
1. |
杨水余,周焕辉,李炎森,许成法. 铜基粉末冶金摩擦片的研究现状与展望. 粉末冶金工业. 2024(01): 148-153 .
![]() | |
2. |
袁惠惠,李延斌. 激光冲击强化冲击次数对8Cr4Mo4V钢表面状态和力学性能的影响. 机械工程师. 2024(08): 38-41 .
![]() | |
3. |
林灿,彭世龙,唐群华. 激光冲击强化高熵合金的研究进展. 莆田学院学报. 2024(05): 17-22 .
![]() |