DAI Weili, WANG Jin, SONG Yuehong, LIU Yanfeng, HAN Xi, ZHANG MeiLi. Preparation of Cr Coating on AZ31 Magnesium Alloy and Its Corrosion Resistance[J]. Development and Application of Materials, 2022, 37(5): 28-36.
Citation: DAI Weili, WANG Jin, SONG Yuehong, LIU Yanfeng, HAN Xi, ZHANG MeiLi. Preparation of Cr Coating on AZ31 Magnesium Alloy and Its Corrosion Resistance[J]. Development and Application of Materials, 2022, 37(5): 28-36.

Preparation of Cr Coating on AZ31 Magnesium Alloy and Its Corrosion Resistance

More Information
  • Received Date: March 15, 2022
  • Available Online: November 11, 2022
  • To improve the corrosion resistance of AM60 magnesium alloy, Cr coating of the alloy was prepared by mechanical alloying. The microstructure, microhardness and corrosion resistance of AM60 magnesium alloy surface were analyzed by means of XRD, video microscopy, SEM, microhardness tester and an electrochemical workstation. The results showed that Cr coating with density was successfully prepared. There was a good interface bonding between Cr coating and AM60 magnesium alloy. Meanwhile, the microhardness of Cr coating reached to 1132HV, which was 1.96 times higher than that of the substrate. When the ball-to-material ratio is 15∶1 and 20∶1, and the ball milling time is 20h and 15h respectively, which the corresponding self-corrosion current density was all 3 order of magnitudes and the corresponding corrosion voltage was increased by 55% and 238%, respectively. Impedance value were all bigger than that of the substrate. The corrosion resistance of AM60 magnesium alloy in the simulated seawater was greatly improved; Under the experimental conditions, the optimal preparation parameter of Cr coating is as follows: the ball-to-material ratio is 10∶1 and milling time is 20h, resulting in obtaining the Cr coating with the best performance.
  • [1]
    宋光铃. 镁合金腐蚀与防护[M]. 北京: 化学工业出版社, 2006.
    [2]
    JOOST W J, KRAJEWSKI P E. Towards magnesium alloys for high-volume automotive applications[J]. Scripta Materialia, 2017, 128: 107-112.
    [3]
    樊志民, 于锦, 宋影伟, 等. 镁合金点蚀的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
    [4]
    虞思琦, 杨夏炜, 王非凡, 等. 镁合金表面冷喷涂层防护研究进展[J]. 表面技术, 2018, 47(5): 43-56.
    [5]
    赖春明, 李昭赞, 陈静, 等. 镁合金保护涂层技术的发展及其应用现状[J]. 科技资讯, 2021, 19(2): 65-67.
    [6]
    代卫丽, 宋月红, 刘彦峰, 等. AZ31镁合金的SiO2(Mg)涂层的组织及性能研究[J]. 材料开发与应用, 2021, 36(5): 30-37.
    [7]
    高志恒. 镁合金的腐蚀特性及防护技术[J]. 表面技术, 2016, 45(3): 169-177.
    [8]
    陈宏, 王成成, 康亚斌, 等. 镁合金微弧氧化的研究现状[J]. 表面技术, 2019, 48(7): 49-60.
    [9]
    王腾达, 周洋, 王鹏云, 等. Gd含量对Mg-Gd-Y-Zr镁合金的组织及耐蚀性能的影响[J]. 材料开发与应用, 2020, 35(6): 30-35.
    [10]
    LIU C C, LIANG J, ZHOU J S, et al. Effect of laser surface melting on microstructure and corrosion characteristics of AM60B magnesium alloy[J]. Applied Surface Science, 2015, 343: 133-140.
    [11]
    WANG H Y, ZHU Y X, HU Z Y, et al. A novel electrodeposition route for fabrication of the superhydrophobic surface with unique self-cleaning, mechanical abrasion and corrosion resistance properties[J]. Chemical Engineering Journal, 2016, 303: 37-47.
    [12]
    赵强, 周婉秋, 武士威. AM60镁合金锰系磷酸盐转化膜的耐蚀性研究[J]. 电镀与环保, 2011, 31(3): 27-30.
    [13]
    马颖, 刘金忠, 安凌云, 等. AM60B镁合金微弧氧化膜的电化学腐蚀行为[J]. 兰州理工大学学报, 2020, 46(2): 13-18.
    [14]
    谢丽云, 曹献龙, 施国霖, 等. 溶胶-凝胶涂层在镁合金腐蚀防护应用中的研究进展[J]. 材料保护, 2016, 49(5): 41-47.
    [15]
    PROTSENKO V S, DANILOV F I. Chromium electroplating from trivalent chromium baths as an environmentally friendly alternative to hazardous hexavalent chromium baths: comparative study on advantages and disadvantages[J]. Clean Technologies and Environmental Policy, 2014, 16(6): 1201-1206.
    [16]
    LIN J L, DAHAN I. Nanostructured chromium coati-ngs with enhanced mechanical properties and corrosion resistance[J]. Surface and Coatings Technology, 2015, 265: 154-159.
    [17]
    HE X J, TIAN Z H, SHI B H, et al. Effect of gas pressure and bias potential on oxidation resistance of Cr coatings[J]. Annals of Nuclear Energy, 2019, 132: 243-248.
    [18]
    MAHDAVI S, ALLAHKARAM S R, HEIDARZAD-EH A. Characteristics and properties of Cr coatings electrodeposited from Cr(III) baths[J]. Materials Research Express, 2018, 6(2): 026403.
    [19]
    荣欢, 朱明, 朱青, 等. AZ91D镁合金表面无铬转化膜/杂化复合涂层的耐蚀性能[J]. 材料保护, 2018, 51(4): 1-6.
    [20]
    CUI X J, LIN X Z, LIU C H, et al. Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy[J]. Corrosion Science, 2015, 90: 402-412.
    [21]
    彭华乔, 罗振军, 李开宇, 等. 盐酸刻蚀制备铝合金超疏水表面的工艺及自清洁性研究[J]. 应用化工, 2019, 48(12): 2900-2904.
    [22]
    张桂银, 查五生, 陈秀丽, 等. 机械球磨技术在材料制备中的应用[J]. 粉末冶金技术, 2018, 36(4): 315-318.
    [23]
    ZUO M, ZHAO D G, WANG Z Q, et al. Inve-stigation on WC-Al composite coatings of AZ91 alloy by mechanical alloying[J]. Materials Science and Technology, 2015, 31(9): 1051-1057.
    [24]
    SABA F, KABIRI E, KHAKI J V, et al. Fabrication of nanocrystalline TiC coating on AISI D2 steel substrate via high-energy mechanical alloying of Ti and C[J]. Powder Technology, 2016, 288: 76-86.
    [25]
    CANAKCI A, VAROL T, ERDEMIR F, et al. New coating technique for Al–B4C composite coatings by mechanical milling and composite coating[J]. Powder Metallurgy and Metal Ceramics, 2015, 53(11-12): 672-679.
    [26]
    胡永志, 沈以赴, 李博, 等. 机械合金化法制备Ti-Al非晶复合涂层[J]. 稀有金属材料与工程, 2013, 42(1): 171-175.
    [27]
    REHMAN A, SHIRANI BIDABADI M H, LIANG Y, et al. Hot corrosion behaviour of yttrium and alumini-um modified wear resistance coating alloy in mixed sulphate at 900 ℃[J]. Corrosion Science, 2020, 165: 108369.
    [28]
    TAKACS L, TOROSYAN A R. Surface mechanical alloying of an aluminum plate[J]. Journal of Alloys and Compounds, 2007, 434-435: 686-688.
    [29]
    李宝东, 侯利锋, 卫英慧, 等. 表面机械研磨辅助Ni3Al在纯镁表面扩散行为研究[J]. 热加工工艺, 2013, 42(22): 108-110.
    [30]
    潘波, 朱立群. 机械力表面改性对镁合金含铝涂层耐腐蚀性能影响的研究[J]. 电镀与涂饰, 2005, 24(1): 10-12.
    [31]
    TIAN Y, LU C Y, SHEN Y F, et al. Microstructure and corrosion property of CrMnFeCoNi high entropy alloy coating on Q235 substrate via mechanical alloyi-ng method[J]. Surfaces and Interfaces, 2019, 15: 135-140.
    [32]
    TIAN Y, SHEN Y F, LU C Y, et al. Microstructures and oxidation behavior of Al-CrMnFeCoMoW com-posite coatings on Ti-6Al-4V alloy substrate via hi-ghenergy mechanical alloying method[J]. Journal of Alloys and Compounds, 2019, 779: 456-465.
    [33]
    孙斌斌. 高能球磨法制备TiC陶瓷涂层的显微组织及力学性能研究[D]. 南京: 南京航空航天大学, 2010.
    [34]
    ROMANKOV S, PARK Y C, SHCHETININ I V. Fa-brication of W and Mo layers with multi-modal structures on Ti sheets through intense plastic deformation induced by ball collisions[J]. Surface and Coatings Technology, 2019, 357: 473-482.
    [35]
    CHEN C, ZHANG J P, DUAN C Y, et al. Investigation of Cr-Al composite coatings fabricated on pure Ti substrate via mechanical alloying method: effects of Cr-Al ratio and milling time on coating, and oxidation behavior of coating[J]. Journal of Alloys and Compounds, 2016, 660: 208-219.
    [36]
    杨君友, 吴建生, 曾振鹏. 机械合金化过程中粉末的形变及其能量转化[J]. 金属学报, 1998(10): 34-40.
    [37]
    陈枭, 李承娣, 周鸿凯, 等. 不同(Mo+B)/(Ni+Cr)质量比的原位合成MoB/NiCr涂层的组织结构与性能[J]. 稀有金属材料与工程, 2021, 50(9): 3085-3093.
    [38]
    张文利, 查小琴, 罗先甫, 等. 微观组织对5083 H116铝合金板腐蚀性能的影响[J]. 材料开发与应用, 2017, 32(1): 6-11.

Catalog

    Article Metrics

    Article views (228) PDF downloads (27) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return