LAI Xiyue, CHEN Meixia, ZHOU Zhiwei. Study on Calculation Method of Underwater Sound Vibration of Sandwich Plate under Double-Sided Hydrostatic Pressure[J]. Development and Application of Materials, 2023, 38(4): 1-10.
Citation: LAI Xiyue, CHEN Meixia, ZHOU Zhiwei. Study on Calculation Method of Underwater Sound Vibration of Sandwich Plate under Double-Sided Hydrostatic Pressure[J]. Development and Application of Materials, 2023, 38(4): 1-10.

Study on Calculation Method of Underwater Sound Vibration of Sandwich Plate under Double-Sided Hydrostatic Pressure

More Information
  • Received Date: May 10, 2023
  • Available Online: September 12, 2023
  • With the increasing working depth of submarines, composite sandwich panels with lattice-reinforced columns and cavities are gradually applied into external shell structures due to their excellent characteristics of high strength and designability of acoustic vibration performance. In order to establish an underwater acoustic vibration calculation method for composite sandwich panels with lattice-reinforced columns and cavities considering double-sided hydrostatic pressure, the effect of high hydr-ostatic pressure on the acoustic vibration performance of the internal water-filled structures such as the enclosure shell under high diving depth is studied. Firstly, the multi-level homogenization equivalence method is used to treat the core layer of the submerged composite sandwich panel with reinforced columns and cavities as an orthogonal anisotropic material to obtain a homogeneous sandwich panel model. Secondly the transverse double-sided hydrostatic pressure is treated as the circumferential homogeneous load based on the strain energy density equality, and the underwater vibration equation of the homogeneous sandwich panel based on the LW theory model is modified. A method is proposed to calculate the underwater acoustic vibration of composite plate with lattice-reinforced columns and cavities considering the two-sided hydrostatic pressure. Finally, the accuracy of the method is verified using by numerical calculation methods. It is found out that the theoretical solution agrees well with the numerical solution. The method can predict the effect of two-sided hydrostatic pressure on the acoustic vibration performance of composite sandwich panels with lattice-reinforced columns and cavities accurately.
  • [1]
    纪刚, 张纬康, 周其斗. 静水压力作用的水下结构振动及声辐射[J]. 中国造船, 2006, 47(3):37-44.
    [2]
    ZHAO Y H, WENG G J. Effective elastic moduli of ribbon-reinforced composites[J]. Journal of Applied Mechanics, 1990, 57(1):158-167.
    [3]
    周志伟. 含点阵增强柱和空腔的复合夹芯板水下声振计算方法及性能研究[D]. 武汉:华中科技大学, 2021.
    [4]
    黄耀英, 王润富, 吴中如. 无限均布压力作用下弹性地基的应力和位移[J]. 河海大学学报(自然科学版), 2007, 35(5):518-523.
    [5]
    李华东, 朱锡, 梅志远, 等. 静水压力作用下夹芯板结构的变形规律分析[J]. 华中科技大学学报(自然科学版), 2010, 38(11):119-123.
    [6]
    邱家波, 梅志远. 深水静压载荷作用下多层夹芯结构相似特性分析[J]. 船舶工程, 2012, 34(1):65-68.
    [7]
    杨坤, 梅志远, 李华东. 深水静压环境中夹芯结构PUEPM芯材蠕变特性实验研究[J]. 材料工程, 2012, 40(1):51-54.
    [8]
    武大江, 梅志远, 周晓松. 深水静压下混杂夹芯复合结构形变及强度特性[J]. 中国舰船研究, 2015, 10(5):47-52.
    [9]
    陈悦, 朱子旭, 李永清, 等. 夹层复合材料耐压圆柱壳深水静压承载特性分析[J]. 海军工程大学学报, 2018, 30(2):83-87.
    [10]
    刘誉东, 罗浩, 朱俊. 点阵增强泡沫夹芯复合材料静水压作用下力学行为研究[J]. 材料开发与应用, 2022, 37(1):21-28.
    [11]
    李凯, 俞孟萨. 大潜深耐压球壳结构的声振耦合特性研究[J]. 船舶力学, 2022, 26(4):584-594.
    [12]
    KELTIE R F. The effect of hydrostatic pressure fields on the structural and acoustic response of cylindrical shells[J]. The Journal of the Acoustical Society of America, 1986, 79(3):595-603.
    [13]
    刘志忠. 静压条件下圆柱壳-流场耦合系统振动功率流和声辐射特性研究[D]. 武汉:华中科技大学, 2009.
    [14]
    ZHANG Y L, GORMAN D G, REESE J M. Vibration of prestressed thin cylindrical shells conveying fluid[J]. Thin-Walled Structures, 2003, 41(12):1103-1127.
    [15]
    余建星, 李振眠, 余杨, 等. 轴力和水压作用下深水输液管道湿模态振动特性分析[J]. 振动与冲击, 2021, 40(12):90-96.
    [16]
    沈观林, 胡更开, 刘彬. 复合材料力学[M]. 2版. 北京:清华大学出版社, 2013:264-276.
    [17]
    徐芝纶. 弹性力学-下册[M]. 4版. 北京:高等教育出版社, 2006:100-103.
  • Related Articles

    [1]LIU Zhi, WANG Xiaojun. Effect of Protective Coating on Solid Buoyancy Material under Hydrostatic Pressure[J]. Development and Application of Materials, 2024, 39(2): 106-110.
    [2]LIU Jincai, WANG Peng, WANG Wenfei, DING Liang. Dynamic and Static Performance Calculation and Experimental Study of a Rubber Vibration Isolator[J]. Development and Application of Materials, 2022, 37(1): 33-38.
    [3]LIU Yudong, LUO Hao, ZHU Jun. Study on Mechanical Behavior of Lattice Reinforced Foam Sandwich Composite under Hydrostatic Pressure[J]. Development and Application of Materials, 2022, 37(1): 21-28.
    [4]SUN Jihong, MAO Liuwei, ZHAO Mingyu, SONG Qingyuan, DU Du. Effects of Hydrostatic Pressure and Cathodic Polarization on Stress Corrosion of Titanium Alloy in Seawater[J]. Development and Application of Materials, 2022, 37(1): 12-16,20.
    [5]HE Lei, XUE Gang, ZHU Bingkun. Calculating Model on the Melting Point of CaO-SiO2-CaF2 Slag System[J]. Development and Application of Materials, 2017, 32(2): 7-10. DOI: 10.19515/j.cnki.1003-1545.2017.02.002
    [6]ZHANG Zhe-yu, WANG Zhi-qiang, XU Ning, ZHANG Pan, BAI Jian, WANG An-bin. Analysis of Rail Fastener Vibration Reduction Effect Based on Equivalent Lumped Mass Method[J]. Development and Application of Materials, 2014, 29(6): 16-21. DOI: 10.19515/j.cnki.1003-1545.2014.06.003
    [7]WEI Song, XU Ming-hui, HUANG Cheng. A Design Method of Rubber Vibration Isolator[J]. Development and Application of Materials, 2014, 29(2): 11-16. DOI: 10.19515/j.cnki.1003-1545.2014.02.004
    [8]KANG Feng-hui, WU Yi-bo, YANG Rui-rui. Research on Effects Connection Joints on the Vibration Reduction of Composite Stand[J]. Development and Application of Materials, 2013, 28(5): 59-63. DOI: 10.19515/j.cnki.1003-1545.2013.05.015
    [9]REN Weiwei, LI Hongwei, CHENG Wei, ZHAO Shulei. Sound Absorption Performance Calculation Research of Viscoelastic Materials Based on Virtual.lab[J]. Development and Application of Materials, 2013, 28(1): 39-43. DOI: 10.19515/j.cnki.1003-1545.2013.01.010
    [10]Chen Lingge, Zhang Yongbing, Xu Jihong, Qin Xia, Chang Guanjun. Effect of Fillers on Water Insertion Loss of Sound Isolation Rubber Material[J]. Development and Application of Materials, 2002, 17(5): 10-12. DOI: 10.19515/j.cnki.1003-1545.2002.05.004
  • Cited by

    Periodical cited type(1)

    1. 蒋国璋,刘朴湧,张严,段现银,谢寒冰. 面向增材制造的新型蜂窝夹芯结构拓扑优化设计. 粉末冶金工业. 2024(04): 134-140 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (190) PDF downloads (47) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return