Citation: | DU Xiaoshuang, QU Nan, ZHANG Xuexi, LIU Yong, ZHU Jingchuan. Application of Machine Learning in Composition and Process Design of Aluminum Matrix Composites[J]. Development and Application of Materials, 2024, 39(3): 1-9. |
[1] |
黄颖,李育川,雷波,等.粉末冶金颗粒增强铝基复合材料的制备及研究进展[J].功能材料, 2022, 53(10):10071-10086.
|
[2] |
马宗义,肖伯律,张峻凡,等.航天装备牵引下的铝基复合材料研究进展与展望[J].金属学报, 2023, 59(4):457-466.
|
[3] |
曹子林,张林慧,仲斌年,等.铝基复合材料的制备和研究现状[J].金属功能材料, 2023, 30(2):29-39.
|
[4] |
KOLI D K, AGNIHOTRI G, PUROHIT R. Advanced aluminium matrix composites:the critical need of automotive and aerospace engineering fields[J]. Materials Today:Proceedings, 2015, 2(4-5):3032-3041.
|
[5] |
DOKšANOVIĆ T, DžEBA I, MARKULAK D, et al. Applications of aluminium alloys in civil engineering[J]. Tehnicki Vjesnik-Technical Gazette, 2017, 24(5):1609-1618.
|
[6] |
乔文明,李颖.铝基复合材料的制备及应用[J].热加工工艺, 2013, 42(4):126-128.
|
[7] |
贺毅强,苏前航,郇昌宝,等. AlFeNiCrCoTi0.5高熵合金颗粒增强6061铝基复合材料的制备与性能[J].材料工程, 2023, 51(3):67-77.
|
[8] |
谢建新,宿彦京,薛德祯,等.机器学习在材料研发中的应用[J].金属学报, 2021, 57(11):1343-1361.
|
[9] |
赵宝军.基于支持向量回归的铝合金收缩性和流动性预测模型的研究[D].南京:东南大学, 2019.
|
[10] |
刘振东,潘嘉杰,刘全兵.机器学习在设计高性能锂电池正极材料与电解质中的应用[J].化学进展, 2023, 35(4):577-592.
|
[11] |
夏钊,赵帆,刘新华,等.机器学习辅助预测铜铝复合材料界面结构与性能[J].中国有色金属学报, 2023, 33(1):88-99.
|
[12] |
胡静怡,徐翔,季小妹,等.机器学习在非晶合金开发中的应用[J].工程科学学报, 2023, 45(9):1517-1527.
|
[13] |
刘晓,王思迈,卢磊,等.机器学习预测混凝土材料耐久性的研究进展[J].硅酸盐学报, 2023, 51(8):2062-2073.
|
[14] |
HASAN M S, WONG T, ROHATGI P K, et al. Analysis of the friction and wear of graphene reinforced aluminum metal matrix composites using machine learning models[J]. Tribology International, 2022, 170:107527.
|
[15] |
李孝晨.基于机器学习的RAFM钢与低活化高熵合金优化设计及其力学性能评价[D].合肥:中国科学技术大学, 2022.
|
[16] |
MSEBAWI M S, LEMAN Z, SHAMSUDIN S, et al. Production of aluminum AA6061 hybrid nanocom-posite from waste metal using hot extrusion process:strength performance and prediction by RSM and random forest[J]. Materials, 2021, 14(20):6102.
|
[17] |
寇雯博,董灏,邹岷强,等.混杂复合材料等效热传导性能预测的小波-机器学习混合方法[J].物理学报, 2021, 70(3):63-74.
|
[18] |
戚兴怡,胡耀峰,王若愚,等.机器学习在新材料筛选方面的应用进展[J].化学学报, 2023, 81(2):158-174.
|
[19] |
DINAHARAN I, PALANIVEL R, MURUGAN N, et al. Predicting the wear rate of AA6082 aluminum surface composites produced by friction stir processing via artificial neural network[J]. Multidiscipline Modeling in Materials and Structures, 2019, 16(2):409-423.
|
[20] |
郑伟达,张惠然,胡红青,等.基于不同机器学习算法的钙钛矿材料性能预测[J].中国有色金属学报, 2019, 29(4):803-809.
|
[21] |
周书蔚,杨冰,王超,等.机器学习法预测不同应力比6005A-T6铝合金疲劳裂纹扩展速率[J].中国有色金属学报, 2023, 33(8):2416-2427.
|
[22] |
CHEN Z, ZHOU H B, YAN Z J, et al. Machining characteristics of 65vol.% SiCp/Al composite in micro-WEDM[J]. Ceramics International, 2021, 47(10):13533-13543.
|
[23] |
王青林.基于机器学习算法的铸造高温合金材料性能预测[D].武汉:华中农业大学, 2022.
|
[24] |
AYDIN F. Investigation of Elevated Temperature Wear Behavior of Al 2024-BN Composites using Statistical Techniques[J]. Journal of Materials Engineering and Performance, 2021, 30(11):8560-8578.
|
[25] |
HARSHA N, SITA RAMA RAJU K, VENKATA RAMANA V S N, et al. Fabrication and prediction of tensile strength of Al-Al2O3 nano composites[J]. Materials Today:Proceedings, 2019, 18:2197-2200.
|
[26] |
ALTINKÖK N. Modeling of the mechanical and physical properties of hybrid composites produced by gas pressure infiltration[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 41(1):13.
|
[27] |
HASAN M S, KORDIJAZI A, ROHATGI P K, et al. Triboinformatics approach for friction and wear prediction of Al-graphite composites using machine learning methods[J]. Journal of Tribology, 2022, 144(1):011701.
|
[28] |
THANKACHAN T, SOORYA PRAKASH K, MALINI R, et al. Prediction of surface roughness and material removal rate in wire electrical discharge machining on aluminum based alloys/composites using Taguchi coupled Grey Relational Analysis and Artificial Neural Networks[J]. Applied Surface Science, 2019, 472:22-35.
|
[29] |
KORDIJAZI A, BEHERA S, PATEL D, et al. Predictive analysis of wettability of Al-Si based multiphase alloys and aluminum matrix composites by machine learning and physical modeling[J]. Langmuir, 2021, 37(12):3766-3777.
|
[30] |
TURKOGLU T, CELIK S. Process optimization for enhanced tribological properties of Al/MWCNT composites produced by powder metallurgy using artificial neural networks[J]. Surface Topography:Metrology and Properties, 2021, 9(4):045032.
|
[31] |
SHEELWANT A, JADHAV P M, NARALA S K R. ANN-GA based parametric optimization of Al-TiB2 metal matrix composite material processing technique[J]. Materials Today Communications, 2021, 27:102444.
|
[32] |
BALACHANDHAR R, BALASUNDARAM R, RAVIC-HANDRAN M. Analysis of surface roughness of rock dust reinforced AA6061-Mg matrix composite in turning[J]. Journal of Magnesium and Alloys, 2021, 9(5):1669-1676.
|
[33] |
ZUNGER A. Inverse design in search of materials with target functionalities[J]. Nature Reviews Chemistry, 2018, 2:121.
|
[34] |
田宇泽.基于机器学习的电磁超材料逆向设计方法研究[D].武汉:华中师范大学, 2021.
|
[35] |
陈水洲,王晓书,欧阳求保,等.数据驱动的铝基复合材料性能预测和逆向设计[J].上海大学学报(自然科学版), 2022, 28(3):512-522.
|
[1] | WANG Shumei, ZHANG Zhong. Determination of lmpurity Elements in Chromium-Nickel Alloy by ICP-OES[J]. Development and Application of Materials, 2020, 35(2): 18-22. |
[2] | LI Yaqin, ZHANG Zhong, CHEN Xueqing. Determination of Impurity Elements in Titanium Samples by Inductively Coupled Plasma Atomic Emission Spectrometry[J]. Development and Application of Materials, 2019, 34(5): 27-30. DOI: 10.19515/j.cnki.1003-1545.2019.05.006 |
[3] | YANG Shuo, XUE Jianqiang, SHI Linpu. Methods of Extracting and Analyzing of Second-phase of ITO Target[J]. Development and Application of Materials, 2019, 34(1): 45-49. DOI: 10.19515/j.cnki.1003-1545.2019.01.009 |
[4] | ZHENG Guo-hua, SONG Xiao-long, ZHAO Yang. Study on Fatigue Strength of 2Cr11Mo1NiWVNbN Steel for Turbine Blades[J]. Development and Application of Materials, 2014, 29(4): 8-13. DOI: 10.19515/j.cnki.1003-1545.2014.04.002 |
[5] | YU Hai-cheng, HAN Fei, WANG Chun-ying, HAN Tong, WANG Xiao-jun. The Study of δ-F Phase Content in 0Cr17Ni4Cu4Nb Steel[J]. Development and Application of Materials, 2014, 29(1): 27-30. DOI: 10.19515/j.cnki.1003-1545.2014.01.006 |
[6] | ZHANG Jie-pin, MIN Xin-hua. Effects of Elements N,O and Fe on Microstructure and Property of TA15 Titanium Alloy[J]. Development and Application of Materials, 2013, 28(2): 83-86. DOI: 10.19515/j.cnki.1003-1545.2013.02.019 |
[7] | LIU Guo-yuan, WANG Yue, XI Yu-lin, YUE Can-fu. Study on the Dispersed Phases of Al-Mg-Mn Aluminum Alloy[J]. Development and Application of Materials, 2012, 27(2): 32-34,39. DOI: 10.19515/j.cnki.1003-1545.2012.02.008 |
[8] | ZHANG Jin-min, LI Hui, GAO Yi-long, XU Qing-he, WEI Bao-heng. Features of Diffuse Scattered Streak in β Phase of Ti Alloy[J]. Development and Application of Materials, 2008, 23(1): 8-9,16. DOI: 10.19515/j.cnki.1003-1545.2008.01.003 |
[9] | SU Hui, CAO Mao-sheng. Experiment of Compound Coating with(Ni/SiC)P as Second Phase Particle[J]. Development and Application of Materials, 2007, 22(3): 12-14,27. DOI: 10.19515/j.cnki.1003-1545.2007.03.004 |
[10] | CHEN Yi, JIANG Li-jun. Study on Ti/Mn-Based Laves Phase Hydrogen Storage Alloys[J]. Development and Application of Materials, 2005, 20(3): 17-21. DOI: 10.19515/j.cnki.1003-1545.2005.03.006 |