Citation: | SUN Jinmei, ZHANG Baoze, LIU Tie, DONG Meng, GUO Xiaoyu, WANG Qiang. Effect of Gradient High Magnetic Fields on Growth of Primary Phases and Microstructure of Directionally Solidified Hypoeutectic Mn-Sb Alloy[J]. Development and Application of Materials, 2025, 40(1): 13-24. |
[1] |
胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 3版. 上海: 上海交通大学出版社, 2010: 270-271.
|
[2] |
SUN Y, LUO G Q, ZHANG J, et al. Phase transition, microstructure and mechanical properties of TC4 titanium alloy prepared by plasma activated sintering[J]. Journal of Alloys and Compounds, 2018, 741: 918-926.
|
[3] |
MANANI S, PRADHAN A K. Effects of melt thermal treatment on cast Al-Si alloys: a review[J]. Materials Today: Proceedings, 2022, 62: 6568-6572.
|
[4] |
LIANG Z Y, WANG X G, TAN Z H, et al. Effect of solid solution heat treatment duration on microstruc-ture evolution and the high temperature and low stress creep properties of a low-cost fourth-generation single crystal superalloy[J]. Materials Characterization, 2024, 215: 114137.
|
[5] |
JIAN X, XU H, MEEK T T, et al. Effect of power ultrasound on solidification of aluminum A356 alloy[J]. Materials Letters, 2005, 59(2-3): 190-193.
|
[6] |
LIU X B, OSAWA Y, TAKAMORI S, et al. Grain refinement of AZ91 alloy by introducing ultrasonic vibration during solidification[J]. Materials Letters, 2008, 62(17-18): 2872-2875.
|
[7] |
LIU T, WANG Q, GAO A, et al. Fabrication of functionally graded materials by a semi-solid forming process under magnetic field gradients[J]. Scripta Materialia, 2007, 57(11): 992-995.
|
[8] |
JIE J C, ZOU Q C, SUN J L, et al. Separation mechanism of the primary Si phase from the hypereutectic Al-Si alloy using a rotating magnetic field during solidification[J]. Acta Materialia, 2014, 72: 57-66.
|
[9] |
HU S D, HOU L, WANG K, et al. Effect of transverse static magnetic field on radial microstructure of hypereutectic aluminum alloy during directional solidification[J]. Journal of Materials Science & Technology, 2021, 76: 207-214.
|
[10] |
LI M J, TAMURA T, MIWA K J. Controlling microstructures of AZ31 magnesium alloys by an electromagnetic vibration technique during solidification: from experimental observation to theoretical understanding[J]. Acta Materialia, 2007, 55(14): 4635-4643.
|
[11] |
LI M J, TAMURA T, OMURA N, et al. Effects of magnetic field and electric current on the solidification of AZ91D magnesium alloys using an electromagnetic vibration technique[J]. Journal of Alloys and Compounds, 2009, 487(1-2): 187-193.
|
[12] |
ZHONG Q D, ZHONG H Y, HAN H B, et al. Formation mechanism of ring-like segregation and structure during directional solidification under axial static magnetic field[J]. Journal of Materials Science & Technology, 2022, 99: 48-54.
|
[13] |
WANG Q, LIU T, WANG K, et al. Progress on high magnetic field-controlled transport phenomena and their effects on solidification microstructure[J]. ISIJ International, 2014, 54(3): 516-525.
|
[14] |
LIU T, WANG Q, ZHANG H W, et al. Effects of high magnetic fields on solidification microstructure of Al-Si alloys[J]. Journal of Materials Science, 2011, 46(6): 1628-1634.
|
[15] |
LIU T, MIAO L, WANG K, et al. High magnetic-field-induced solute interception among dendrite arms in the mushy zone of a Mn-Sb alloy[J]. Journal of Applied Physics, 2018, 124(4): 045901.
|
[16] |
LIN W H, ZHOU B F, LIU Y, et al. Dendrite morphology in Al-20 wt%Cu hypoeutectic alloys in 24 T high magnetic field quantified by ex-situ X-ray tomography[J]. Journal of Alloys and Compounds, 2022, 918: 165679.
|
[17] |
KAO A, SHEVCHENKO N, HE S Y, et al. Magnetic effects on microstructure and solute plume dynamics of directionally solidifying Ga-In alloy[J]. JOM, 2020, 72(10): 3645-3651.
|
[18] |
FAN X Q, SHEVCHENKO N, TONRY C, et al. Controlling solute channel formation using magnetic fields[J]. Acta Materialia, 2023, 256: 119107.
|
[19] |
WANG Q, WANG C J, LIU T, et al. Control of solidified structures in aluminum-silicon alloys by high magnetic fields[J]. Journal of Materials Science, 2007, 42(24): 10000-10006.
|
[20] |
LIU T, WANG Q, WANG C J, et al. Effects of high magnetic fields on the distribution and alignment of primary phases in an Al-12Si-11.8Mg-6.5Ti alloy[J]. Metallurgical and Materials Transactions A, 2011, 42(7): 1863-1869.
|
[21] |
TANG P C, TIAN Y H, LIU S S, et al. Microstructure development in eutectic Al-Fe alloy during directional solidification under high magnetic fields at different growth velocities[J]. Journal of Materials Science, 2021, 56(28): 16134-16144.
|
[22] |
YAN J G, LIU T, WANG M M, et al. Constitutional supercooling and corresponding microstructure transition triggered by high magnetic field gradient during directional solidification of Al-Fe eutectic alloy[J]. Materials Characterization, 2022, 188: 111920.
|
[23] |
STEINBERG D J. A simple relationship between the temperature dependence of the density of liquid metals and their boiling temperatures[J]. Metallurgical Transactions, 1974, 5(6): 1341-1343.
|
[24] |
DUPREE R, SEYMOIR E F W. Liquid metals[M]. New York: Marcel Dekker, 1972.
|
[25] |
OKUDA H, SENBA S, SATO H, et al. Electronic structure of MnSb and MnP[J]. Journal of Electron Spectroscopy and Related Phenomena, 1999, 101: 657-660.
|
[26] |
BAI V S, RAMA RAO K V S. Solid solutions of MnSb as recording media in optical memory applications[J]. Journal of Applied Physics, 1984, 55(6): 2167-2169.
|
[27] |
YOSHIOKA N, KOSHIMURA M, ONO M, et al. Ma-gnetic and magneto-optical properties of Mn-Sb alloys and multilayer films[J]. Journal of Magnetism and Magnetic Materials, 1988, 74(1): 51-58.
|
[28] |
IKEZOE Y, HIROTA N, NAKAGAWA J, et al. Making water levitate[J]. Nature, 1998, 393: 749-750.
|
[29] |
CATHERALL A T, EAVES L, KING P J, et al. Floating gold in cryogenic oxygen[J]. Nature, 2003, 422: 579.
|
[30] |
HANSEN M, ANDERKO K. Constitution of binary alloys[M]. 2d ed.. New York: McGraw-Hill, 1958.
|
[31] |
LIU T, WANG Q, YUAN Y, et al. High-gradient magnetic field-controlled migration of solutes and particles and their effects on solidification microstructure: a review[J]. Chinese Physics B, 2018, 27(11): 118103.
|
[32] |
周天儒, 刘铁, 阎金戈, 等. 强磁场下金属凝固过程中的溶质迁移行为及组织演变[J]. 铸造技术, 2022, 43(8): 573-584.
|
[33] |
袁言鼎, 董书琳, 刘铁, 等. 强磁场定向凝固金属材料界面稳定性研究进展[J]. 铸造技术, 2022, 43(9): 713-724.
|
[34] |
LI X, FAUTRELLE Y, REN Z M. Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field[J]. Acta Materialia, 2007, 55(11): 3803-3813.
|
[35] |
LI X, FAUTRELLE Y, REN Z M, et al. Morphological instability of interface, cell and dendrite during directional solidification under strong magnetic field[J]. Journal of Crystal Growth, 2011, 318(1): 23-27.
|
[36] |
LI X, FAUTRELLE Y, ZAIDAT K, et al. Columnar-to-equiaxed transitions in al-based alloys during directional solidification under a high magnetic field[J]. Journal of Crystal Growth, 2010, 312(2): 267-272.
|
[37] |
GUO X Y, LIU T, YANG H Z, et al. 〈111〉-orientation growth of Tb-Dy-Fe alloys induced by high magnetic fields during directional solidification[J]. Materials Characterization, 2024, 213: 114047.
|