Citation: | BI Jianlei, WEI Wu, ZHAI Yuyan, PEI Yu, WEN Shengping, RONG Li, HUANG Hui, NIE Zuoren. Research and Progress of Aluminum Alloys Containing Erbium by Laser Powder Bed Fusion[J]. Development and Application of Materials, 2024, 39(1): 94-104. |
[1] |
ABOULKHAIR N T, SIMONELLI M, PARRY L, et al. 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting[J]. Progress in Materials Science, 2019, 106: 100578.
|
[2] |
MICHI R A, PLOTKOWSKI A, SHYAM A, et al. To-wards high-temperature applications of aluminium alloys enabled by additive manufacturing[J]. International Materials Reviews, 2022, 67(3): 298-345.
|
[3] |
DEBROY T, WEI H L, ZUBACK J S, et al. Additive manufacturing of metallic components - Process, structure and properties[J]. Progress in Materials Science, 2018, 92: 112-224.
|
[4] |
LIU Q, WU H K, PAUL M J, et al. Machinelear-ning assisted laser powder bed fusion process optimization for AlSi10Mg: new microstructure description indices and fracture mechanisms[J]. Acta Materialia, 2020, 201: 316-328.
|
[5] |
KEMPF A, HILGENBERG K. Influence of sub-cell structure on the mechanical properties of AlSi10Mg manufactured by laser powder bed fusion[J]. Materials Science and Engineering: A, 2020, 776: 138976.
|
[6] |
WANG R, WANG J, LEI L M, et al. Laser additive manufacturing of strong and ductile Al-12Si alloy under static magnetic field[J]. Journal of Materials Science & Technology, 2023, 163: 101-112.
|
[7] |
RAO H, GIET S, YANG K, et al. The influence of processing parameters on aluminium alloy A357 manufactured by Selective Laser Melting[J]. Materials & Design, 2016, 109: 334-346.
|
[8] |
TANG H P, GAO C F, ZHANG Y, et al. Effects of direct aging treatment on microstructure, mechanical properties and residual stress of selective laser melted AlSi10Mg alloy[J]. Journal of Materials Science & Technology, 2023, 139: 198-209.
|
[9] |
PELLIZZARI M, MALFATTI M, LORA C, et al. Pro-perties of laser metal fused AlSi10Mg alloy processed using different heat treatments[J]. BHM Berg-Und Hüttenmännische Monatshefte, 2020, 165(3): 164-168.
|
[10] |
WANG M, SONG B, WEI Q S, et al. Effects of annealing on the microstructure and mechanical properties of selective laser melted AlSi7Mg alloy[J]. Materials Science and Engineering: A, 2019, 739: 463-472.
|
[11] |
YANG K, ROMETSCH P, DAVIES C H J, et al. Ef-fect of heat treatment on the microstructure and anisotropy in mechanical properties of A357 alloy produced by selective laser melting[J]. Materials & Design, 2018, 154: 275-290.
|
[12] |
PADOVANO E, BADINI C, PANTARELLI A, et al. A comparative study of the effects of thermal treatments on AlSi10Mg produced by laser powder bed fusion[J]. Journal of Alloys and Compounds, 2020, 831: 154822.
|
[13] |
魏午, 毕舰镭, 郭彦梧, 等. 激光粉末床融合铝合金微合金化研究进展[J]. 海军航空大学学报, 2023, 38(4): 338-346.
|
[14] |
SPIERINGS A B, DAWSON K, DUMITRASCHKEWITZ P, et al. Microstructure characterization of SLM-processed Al-Mg-Sc-Zr alloy in the heat treated and HIPed condition[J]. Additive Manufacturing, 2018, 20: 173-181.
|
[15] |
SPIERINGS A B, DAWSON K, KERN K, et al. SLM-processed Sc- and Zr- modified Al-Mg alloy: mechanical properties and microstructural effects of heat treatment[J]. Materials Science and Engineering: A, 2017, 701: 264-273.
|
[16] |
CABRERA-CORREA L, GONZÁLEZ-ROVIRA L, DE DIOS LÓPEZ-CASTRO J, et al. Effect of the heat treatment on the mechanical properties and microstructure of Scalmalloy© manufactured by Selective Laser Melting (SLM) under certified conditions[J]. Materials Characterization, 2023, 196: 112549.
|
[17] |
AWD M, TENKAMP J, HIRTLER M, et al. Compa-rison of microstructure and mechanical properties of scalmalloy© produced by selective laser melting and laser metal deposition[J]. Materials, 2017, 11(1): 17.
|
[18] |
SPIERINGS A B, DAWSON K, UGGOWITZER P J, et al. Influence of SLM scan-speed on microstructure, precipitation of Al3Sc particles and mechanical properties in Sc- and Zr-modified Al-Mg alloys[J]. Materials & Design, 2018, 140: 134-143.
|
[19] |
LI R D, WANG M B, LI Z M, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms[J]. Acta Materialia, 2020, 193: 83-98.
|
[20] |
CROTEAU J R, GRIFFITHS S, ROSSELL M D, et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting[J]. Acta Materialia, 2018, 153: 35-44.
|
[21] |
GUO Y W, WEI W, SHI W, et al. Effect of Er and Zr additions and aging treatment on grain refinement of aluminum alloy fabricated by laser powder bed fusion[J]. Journal of Alloys and Compounds, 2022, 912: 165237.
|
[22] |
GUO Y W, WEI W, SHI W, et al. Microstructure and mechanical properties of Al-Mg-Mn-Er-Zr alloys fabricated by laser powder bed fusion[J]. Materials & Design, 2022, 222: 111064.
|
[23] |
ZHANG B, WEI W, SHI W, et al. Effect of heat treatment on the microstructure and mechanical properties of Er-containing Al-7Si-0.6 Mg alloy by laser powder bed fusion[J]. Journal of Materials Research and Technology, 2022, 18: 3073-3084.
|
[24] |
LI M, YAO S, WANG J J, et al. Role of Er on the densification, microstructure and mechanical properties of 7075 aluminium alloys manufactured by laser powder bed fusion[J]. Journal of Materials Research and Technology, 2022, 20: 2021-2033.
|
[25] |
GUO Y W, WEI W, SHI W, et al. Effect of aging treatment on phase evolution and mechanical properties of selective laser melted Al-Mg-Er-Zr alloy[J]. Materials Letters, 2022, 327: 133001.
|
[26] |
WEN S P, GAO K Y, LI Y, et al. Synergetic effect of Er and Zr on the precipitation hardening of Al-Er-Zr alloy[J]. Scripta Materialia, 2011, 65(7): 592-595.
|
[27] |
WEN S P, GAO K Y, HUANG H, et al. Precipita-tion evolution in Al-Er-Zr alloys during aging at elevated temperature[J]. Journal of Alloys and Compounds, 2013, 574: 92-97.
|
[28] |
WEN S P, XING Z B, HUANG H, et al. The effect of erbium on the microstructure and mechanical properties of Al-Mg-Mn-Zr alloy[J]. Materials Science and Engineering: A, 2009, 516(1-2): 42-49.
|
[29] |
PRASHANTH K G, ECKERT J. Formation of metastable cellular microstructures in selective laser melted alloys[J]. Journal of Alloys and Compounds, 2017, 707: 27-34.
|
[30] |
MARQUIS E A, SEIDMAN D N. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys[J]. Acta Materialia, 2001, 49(11): 1909-1919.
|
[31] |
HYER H, ZHOU L, MEHTA A, et al. Composition-dependent solidification cracking of aluminum-silicon alloys during laser powder bed fusion[J]. Acta Materialia, 2021, 208: 116698.
|
[32] |
HYER H, ZHOU L, MEHTA A, et al. Effects of al-loy composition and solid-state diffusion kinetics on powder bed fusion cracking susceptibility[J]. Journal of Phase Equilibria and Diffusion, 2021, 42(1): 5-13.
|
[33] |
张冬云. 采用区域选择激光熔化法制造铝合金模型[J]. 中国激光, 2007, 34(12): 1700-1704.
|
[34] |
PAUL M J, LIU Q, BEST J P, et al. Fracture resis-tance of AlSi10Mg fabricated by laser powder bed fusion[J]. Acta Materialia, 2021, 211: 116869.
|
[35] |
CHEN B, MOON S K, YAO X, et al. Strength and strain hardening of a selective laser melted AlSi10Mg alloy[J]. Scripta Materialia, 2017, 141: 45-49.
|
[36] |
COLOMBO M, GARIBOLDI E, MORRI A. Er addi-tion to Al-Si-Mg-based casting alloy: effects on microstructure, room and high temperature mechanical properties[J]. Journal of Alloys and Compounds, 2017, 708: 1234-1244.
|
[37] |
QI P, LI B L, WANG T B, et al. Effect of erbium on the microstructure and mechanical properties of semi-solid Al–7Si–0.4Mg alloy[J]. Advanced Engineering Materials, 2019, 21(3): 1801037.
|
[38] |
RUTTER J W, CHALMERS B. A prismatic substructure formed during solidification of metals[J]. Canadian Journal of Physics, 1953, 31(1): 15-39.
|
[39] |
GUO Y W, WEI W, SHI W, et al. Selective laser melting of Er modified AlSi7Mg alloy: effect of processing parameters on forming quality, microstructure and mechanical properties[J]. Materials Science and Engineering: A, 2022, 842: 143085.
|
[40] |
BI J L, WEI W, GUO Y W, et al. Evolution of multi-cellular structure on Zr and Er modified Al6Si1Mg alloy fabricated by laser powder bed fusion[J]. Journal of Materials Research and Technology, 2023, 25: 398-410.
|
[41] |
OKAMOTO H. Al-Er (aluminum-erbium)[J]. Jo-urnal of Phase Equilibria and Diffusion, 2011, 32(3): 261-262.
|
[42] |
GUO Y W, WEI W, HUANG H, et al. Approaching an ultrafine microstructure and excellent tensile pro-perties of a novel Er/Zr modified Al-7Si-0.6 Mg alloy fabricated by selective laser melting[J]. Journal of Materials Research and Technology, 2023, 22: 1625-1637.
|
[43] |
FIOCCHI J, TUISSI A, BIFFI C A. Heat treatment of aluminium alloys produced by laser powder bed fusion: a review[J]. Materials & Design, 2021, 204: 109651.
|
[44] |
ZOU T C, CHEN M Y, ZHU H, et al. Effect of heat treatments on microstructure and mechanical properties of AlSi7Mg fabricated by selective laser melting[J]. Journal of Materials Engineering and Performance, 2022, 31(3): 1791-1802.
|
[45] |
FIOCCHI J, BIFFI C A, COLOMBO C, et al. Ad hoc heat treatments for selective laser melted Alsi10mg alloy aimed at stress-relieving and enhancing mechanical performances[J]. JOM, 2020, 72(3): 1118-1127.
|
[46] |
郭泽亮, 樊笑婕. 美国濒海战斗舰用铝合金材料评述[J]. 材料开发与应用, 2021, 36(6): 77-82.
|
[47] |
STARINK M J, ZAHRA A M. β’ and β precipitation in an Al-Mg alloy studied by DSC and TEM[J]. Acta Materialia, 1998, 46(10): 3381-3397.
|
[48] |
KOTOV A D, MOCHUGOVSKIY A G, MOSLEH A O, et al. Microstructure, superplasticity, and mechanical properties of Al-Mg-Er-Zr alloys[J]. Materials Characterization, 2022, 186: 111825.
|
[49] |
SUN Y W, WANG J L, SHI Y, et al. An SLM-processed Er- and Zr- modified Al-Mg alloy: Microstructure and mechanical properties at room and elevated temperatures[J]. Materials Science and Engineering: A, 2023, 883: 145485.
|
[50] |
吴颖, 温彤, 朱曾涛. 7xxx系铝合金时效处理的研究现状及应用进展[J]. 材料导报, 2012, 26(15): 114-118.
|
[51] |
李敬勇, 王虎, 刘志鹏, 等. 预拉伸条件下铝合金筒体焊接残余应力和变形的数值模拟[J]. 材料开发与应用, 2008, 23(5): 52-55.
|
[52] |
MONTERO-SISTIAGA M L, MERTENS R, VRA-NCKEN B, et al. Changing the alloy composition of Al7075 for better processability by selective laser melting[J]. Journal of Materials Processing Technology, 2016, 238: 437-445.
|
[53] |
OTANI Y, SASAKI S. Effects of the addition of silic-on to 7075 aluminum alloy on microstructure, mechanical properties, and selective laser melting processability[J]. Materials Science and Engineering: A, 2020, 777: 139079.
|
[54] |
SUN S Y, LIU P, HU J Y, et al. Effect of solid solution plus double aging on microstructural characterization of 7075 Al alloys fabricated by selective laser melting (SLM)[J]. Optics & Laser Technology, 2019, 114: 158-163.
|
[55] |
ZHOU L, PAN H, HYER H, et al. Microstructure and tensile property of a novel AlZnMgScZr alloy additively manufactured by gas atomization and laser powder bed fusion[J]. Scripta Materialia, 2019, 158: 24-28.
|
[56] |
ZHU Z G, NG F L, SEET H L, et al. Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation[J]. Materials Today, 2022, 52: 90-101.
|
[57] |
ZHANG Z Q, LI D H, LI S C, et al. Effect of direct aging treatment on microstructure, mechanical and corrosion properties of a Si-Zr-Er modified Al-Zn-Mg-Cu alloy prepared by selective laser melting technology[J]. Materials Characterization, 2022, 194: 112459.
|
[58] |
LI D H, ZHANG Z Q, LI S C, et al. Microstructure, mechanical properties and fatigue crack growth behavior of an Al-Zn-Mg-Cu-Si-Zr-Er alloy fabricated by laser powder bed fusion[J]. International Journal of Fatigue, 2023, 172: 107636.
|
[59] |
LIU S W, ZHU H H, PENG G Y, et al. Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis[J]. Materials & Design, 2018, 142: 319-328.
|
[60] |
HU Z H, NIE X J, QI Y, et al. Cracking criterion for high strength Al-Cu alloys fabricated by selective laser melting[J]. Additive Manufacturing, 2021, 37: 101709.
|
[61] |
TANG Y T, PANWISAWAS C, GHOUSSOUB J N, et al. Alloys-by-design: application to new superalloys for additive manufacturing[J]. Acta Materialia, 2021, 202: 417-436.
|
[62] |
ZHAO Z Y, WANG J B, DU W B, et al. Numerical simulation and experimental study of the 7075 aluminum alloy during selective laser melting[J]. Optics & Laser Technology, 2023, 167: 109814.
|
[63] |
KANNO M, ARAKI I, CUI Q. Precipitation beha-viour of 7000 alloys during retrogression and reaging treatment[J]. Materials Science and Technology, 1994, 10(7): 599-603.
|
[64] |
朱溪, 袁铁锤, 王敏卜, 等. 选区激光熔化增材制造高强度Al-Mg-Sc-Zr合金的微观组织与力学性能[J]. 粉末冶金材料科学与工程, 2022, 27(2): 205-214.
|
[1] | GENG Yaoxiang, SHAN Zhifa, CHEN Yongkang, ZAI Chunfeng, WANG Xiao, GAO Xing, WANG Yuxin. Processability, Microstructure, and Mechanical Property of Al-Si-Mg-Zr-Cu Alloy Fabricated by Selective Laser Melting[J]. Development and Application of Materials, 2024, 39(1): 23-29. |
[2] | WANG Tengda, ZHOU Yang, WANG Pengyun, LIU Xiaohe. Effect of Gd on Microstructure and Corrosion Resistance of Mg-Gd-Y-Zr Alloys[J]. Development and Application of Materials, 2020, 35(6): 30-35. |
[3] | MA Yan, XI Benyu, WANG Yu. Study on Hot Deformation Behavior of 5052+Er Aluminum Alloy[J]. Development and Application of Materials, 2019, 34(2): 70-75. DOI: 10.19515/j.cnki.1003-1545.2019.02.011 |
[4] | WANG Dong, XIONG Yicheng, LI Ting. Effect of Er on Microstructure and Properties of Aluminum Alloy for Vehicle Frame[J]. Development and Application of Materials, 2019, 34(2): 57-62,69. DOI: 10.19515/j.cnki.1003-1545.2019.02.009 |
[5] | CHEN Xiaomin. Oxidation Mechanism of a Zr-based Bulk Metallic Glass[J]. Development and Application of Materials, 2016, 31(2): 32-36. DOI: 10.19515/j.cnki.1003-1545.2016.02.007 |
[6] | FU Junsheng, HAO Hongmei, ZHANG Zhong. Determination of Mo and Zr in Al-Mo-Zr Alloy by Inductively Coupled Plasma Atomic Emission Spectrometric Inner Standard Method[J]. Development and Application of Materials, 2016, 31(1): 78-82. DOI: 10.19515/j.cnki.1003-1545.2016.01.018 |
[7] | GUO Ning, SUN Peng-peng, FU Hao, ZHANG Hao, WANG Gang, XU Xi-jun. Impacts of GTAW Parameter on Property of Ti-Al-Mo-Ni-Zr Welded Joint[J]. Development and Application of Materials, 2013, 28(4): 54-59. DOI: 10.19515/j.cnki.1003-1545.2013.04.012 |
[8] | GE Yun-ke, GU Xiao-bo, YU Li-hua, XU Jun-hua. Investigation of Phase Structure and Properties of (Zr,Al)N Coatings[J]. Development and Application of Materials, 2008, 23(1): 21-25,37. DOI: 10.19515/j.cnki.1003-1545.2008.01.006 |
[9] | ZI Jin-lei, ZHANG Ya-ni, ZHENG Mao-sheng, ZHU Jie-wu. Effect of Microelement Cr and Zr on Performance of Copper Alloy[J]. Development and Application of Materials, 2007, 22(4): 1-3. DOI: 10.19515/j.cnki.1003-1545.2007.04.001 |
[10] | Xing Ruyi, Kang Buxi, Su Juanhua, Tian Baohong, Liu Ping. Study on Micro Hardness and Conductivity of Cu-Cr-Zr Alloy[J]. Development and Application of Materials, 2003, 18(4): 21-22,46. DOI: 10.19515/j.cnki.1003-1545.2003.04.006 |