Volume 38 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
GU Shude. Research Progress in Preparation Methods and Properties of Titanium Matrix Composites[J]. Development and Application of Materials, 2023, 38(1): 85-97.
Citation: GU Shude. Research Progress in Preparation Methods and Properties of Titanium Matrix Composites[J]. Development and Application of Materials, 2023, 38(1): 85-97.

Research Progress in Preparation Methods and Properties of Titanium Matrix Composites

  • Received Date: 2022-06-06
    Available Online: 2023-03-11
  • Titanium matrix composites have been widely used in aerospace, automotive and other fields due to their low density and excellent room and high temperature properties. Here are reviewed the common preparation methods, hot working processes and main properties of discontinuous titanium matrix composites, and are summarized the main problems and solutions in the preparation of titanium matrix composites. Finally, the future development of research and application of titanium matrix composites is pointed out.

     

  • loading
  • [1]
    SHAFIEI-ZARGHANI A, KASHANI-BOZORG S F,GERLICH A P. Strengthening analyses and mechanical assessment of Ti/Al2O3 nano-composites produced by friction stir processing[J]. Materials Science and Engineering:A, 2015, 631:75-85.
    [2]
    POLETTI C, BALOG M, SCHUBERT T, et al. Production of titanium matrix composites reinforced with SiC particles[J]. Composites Science and Technology, 2008, 68(9):2171-2177.
    [3]
    YAN Q, CHEN B, LI J S. Super-high-strength graphene/titanium composites fabricated by selective laser melting[J]. Carbon, 2021, 174:451-462.
    [4]
    LIU J Q, HUN, LIU X Y, etal. Microstructure and mechanical properties of graphene oxide-reinforced titanium matrix composites synthesized by hot-pressed sintering[J]. Nanoscale ResLett, 2019, 14(1):114.
    [5]
    CAO Z, WANG X D, LI J L, et al. Reinforcement with graphene nanoflakes in titanium matrix compos-ites[J]. Journal of Alloys and Compounds, 2017, 696:498-502.
    [6]
    刘经奇.纳米碳增强钛基复合材料的制备与性能研究[D].重庆:重庆大学,2019.
    [7]
    雷力明,黄光法,王方秋,等.基体组织对TiC/Ti-6Al-4V复合材料断裂韧性的影响[J].金属热处理, 2014, 439(9):100-103.
    [8]
    GENG K, LU W J, YANG Z F, et al. In situ preparation of titanium matrix composites reinforced by TiB and Nd2O3[J]. Materials Letters, 2003, 57(24-25):4054-4057.
    [9]
    孙曙宇,吕维洁.增强体含量对原位合成钛基复合材料微观组织及力学性能的影响[J].稀有金属材料与工程, 2020, 49(2):398-403.
    [10]
    来晓君,邱培坤,吕维洁,等.(TiB+La2O3)/IMI834钛基复合材料超塑性变形行为及显微组织演变[J].机械工程材料, 2020, 44(8):32-37.
    [11]
    TABRIZI G S, BABAKHANI A, SAJJADI S A, et al. Microstructural aspects of in situ TiB reinforced Ti-6Al-4V composite processed by spark plasma sinte-ring[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(5):1460-1467.
    [12]
    YANG Z F, LU W J, QIN J N, et al. Microstructure and tensile properties of in situ synthesized (TiC+TiB+Nd2O3)/Ti-alloy composites at elevated temper-ature[J]. Materials Science and Engineering:A, 2006, 425(1-2):185-191.
    [13]
    郭相龙.变形量对(TiB+La2O3)/Ti复合材料组织结构及力学性能影响的研究[D].上海:上海交通大学, 2013.
    [14]
    HUANG G F, WANG J H, WANG Q, et al. Microstructures and mechanical properties of hot indirect extruded in situ (TiB+TiC)/Ti-6Al-4V composites:effect of extrusion temperature[J]. Materials Science and Engineering:A, 2021, 811:140988.
    [15]
    WANG S, HUANG L J, ZHANG R, et al. Enhanc-ing ductility of titanium matrix composites by multimodal α-grains[J]. Scripta Materialia, 2019, 170:161-165.
    [16]
    KIM J S, LEE K M, CHO D H, et al. Fretting wear characteristics of titanium matrix composites reinforced by titanium boride and titanium carbide particulates[J]. Wear, 2013, 301(1-2):562-568.
    [17]
    AN Q, HUANG L J, JIANG S, et al. Wear rate of titanium matrix composite coating at high temperature further increased by non-stoichiometric TixC oxid-ation[J]. Ceramics International, 2020, 46(6):8068-8074.
    [18]
    CAO Z, LI J L, ZHANG H P, et al. Mechanical and tribological properties of graphene nanoplatelets-reinforced titanium composites fabricated by powder metallurgy[J]. Journal of Iron and Steel Research International, 2020, 27(11):1357-1362.
    [19]
    BARBOZAMJR, PEREZ E A C, MEDEIROS M M, et al. Creep behavior of Ti-6Al-4V and a comparison with titanium matrix composites[J]. Materials Science and Engineering:A, 2006, 428(1-2):319-326.
    [20]
    QI J Q, CHANG Y, HE Y Z, et al. Effect of Zr, Mo and TiC on microstructure and high-temperature tensile strength of cast titanium matrix composites[J]. Materials&Design, 2016, 99:421-426.
    [21]
    YANG J H, CHEN Y Y, XIAO S L, et al. High temperature tensile properties, deformation, and fracture behavior of a hybrid-reinforced titanium alloy composite[J]. Materials Science and Engineering:A, 2020, 788:139516.
    [22]
    SELVAKUMAR M, RAMKUMAR T, CHANDRAS-EKAR P. Thermal characterization of titaniumtitanium boride composites[J]. Journal of Thermal Analysis and Calorimetry,2019, 136(1):419-424.
    [23]
    吴焰,张洪梅,穆啸楠,等.轧制变形量对石墨烯/钛基复合材料组织及力学性能的影响[C]//特种粉末冶金及复合材料制备/加工学术会议.北京:中国有色金属学会, 2016.
    [24]
    段宏强.原位合成层状结构钛基复合材料的制备方法与组织性能研究[D].上海:上海交通大学, 2016.
    [25]
    YANG J H, CHEN Y Y, XIAO S L, et al. High temperature tensile properties, deformation, and fracture behavior of a hybrid-reinforced titanium alloy composite[J]. Materials Science and Engineering:A, 2020, 788:139516.
    [26]
    BRUN M, ANOSHKIN N, SHAKHANOVA G, et al. Physical processes and regimes of thermomechanical processing controlling development of regulated structure in the α+β titanium alloys[J]. Materials Science and Engineering:A, 1998, 243(1-2):77-81.
    [27]
    项娟,韩远飞,乐建温,等.颗粒增强钛基复合材料大塑性变形组织演变与性能[J].稀有金属材料与工程, 2020, 49(3):901-906.
    [28]
    ZHANG B, ZHANG F M, SABA F, et al. Graphene-TiC hybrid reinforced titanium matrix composites with 3D network architecture:Fabrication, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2021, 859:157777.
    [29]
    LU J W, DONG L L, LIU Y, et al. Simultaneously enhancing the strength and ductility in titanium matrix composites via discontinuous network structure[J]. Composites Part A:Applied Science and Manufacturing, 2020, 136:105971.
    [30]
    ZHANG J Y, KE W X, JI W, et al. Microstructure and properties of in situ titanium boride (TiB)/titanium (Ti) composites[J]. Materials Science and Engineering:A, 2015, 648:158-163.
    [31]
    HUANG L J, GENGA L, PENG H X, et al. High temperature tensile properties of in situ TiBw/Ti-6Al-4V composites with a novel network reinforcement architecture[J]. Materials Science and Engineering:A, 2012,534:688-692.
    [32]
    MUNIR K S, ZHENG Y F, ZHANG D L, et al. Improving the strengthening efficiency of carbon nano-tubes in titanium metal matrix composites[J]. Materials Science and Engineering:A, 2017, 696:10-25.
    [33]
    YANG W Z, HUANG W M, WANG Z F, et al. Thermal and mechanical properties of graphene-titanium composites synthesized by microwave sintering[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(8):707-713.
    [34]
    HAYAT M D, SINGHA H, MIODOWSKIB A, et al. Fabrication, microstructure and mechanical properties of in situ formed particle reinforced titanium matrix composite[J]. International Journal of Refractory Metals and Hard Materials, 2020, 92:105257.
    [35]
    LI S F, SUN B, IMAI H, et al. Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite[J]. Composites Part A:Applied Science and Manufacturing, 2013, 48:57-66.
    [36]
    GE Y X, ZHANG H M, CHENG X W, et al. Interface evolution and mechanical properties of nickel coated graphene nanoflakes/pure titanium matrix composites[J]. Journal of Alloys and Compounds, 2021, 853:157157.
    [37]
    MUNIR K S, LI Y, LIANG D, et al. Effect of dispersion method on the deterioration, interfacial interactions and re-agglomeration of carbon nanotubes in titanium metal matrix composites[J]. Materials&Design, 2015, 88:138-148.
    [38]
    杨伟,张崇才,涂铭旌.钛及钛合金粉末注射成型研究近况及应用前景[J].材料导报, 2015, 29(9):123-128.
    [39]
    王家惠,席健,史庆南.注射成形钛合金喂料装载量及流变特性研究[J].稀有金属材料与工程, 2012, 41(S2):827-830.
    [40]
    HUANG L J, GENG L, WANG B, et al. Effects of volume fraction on the microstructure and tensile properties of in situ TiBw/Ti-6Al-4V composites with novel network microstructure[J]. Materials&Design, 2013, 45:532-538.
    [41]
    郑正.原位合成(TiC+TiB)/Ti基复合材料热力学及组织性能研究[D].镇江:江苏科技大学, 2017.
    [42]
    冯海波. SPS原位TiB增强Ti基复合材料的组织结构与TiB生长机制[D].哈尔滨:哈尔滨工业大学, 2005
    [43]
    HU D, JOHNSON T P, LORETTO M H. Tensile Pr-operties of a Gas Atomised Ti-6Al-4V-TiC Com-posite[C]//Titanium'95 Science and Technology. 1995.
    [44]
    ZHANG E, WANG H W, ZENG S Y. Microstructure characteristics of in situ carbide reinforced titanium aluminide (Ti3Al) matrix composites[J]. 2001, 20(18):1733-1735.
    [45]
    ZHANG E L, JIN Y X, ZENG S Y, et al. Preparation and microstructure of as-cast in situ Ti-6Al/TiB composites[J].材料科学技术(英文版), 2001, 17(0z1):S159-S162.
    [46]
    ZHANG E L, ZENG S Y, WANG B, et al. Preparation and microstructure of in situ particle reinforced titanium matrix alloy[J]. Journal of Materials Processing Technology, 2002, 125-126:103-109.
    [47]
    吕维洁,张荻,张小农,等.原位合成TiB/Ti复合材料的微观结构及力学性能[J].上海交通大学学报, 2000,34(12):1606-1609.
    [48]
    LU W J, ZHANG D, ZHANG X N, et al. Microstructural characterization of TiC in in situ synthesized titanium matrix composites prepared by common casting technique[J]. Journal of Alloys and Compounds, 2001, 327(1-2):248-252.
    [49]
    Zhang X N. Fabrication and mechanical properties of in-situ synthesized (TiB+TiC)/Ti-6242 metal matrix composites[J]. Journal of Advanced Materials, 2005, 37(1):11-15.
    [50]
    吕维洁,杨志峰,张荻,等.原位合成(TiB+Al2O3)/Ti复合材料[J].铸造, 2002,51(5):277-279.
    [51]
    耿珂,吕维洁,张荻,等.原位合成TiB和Nd2O3增强钛基复合材料[J].上海交通大学学报, 2004,38(2):300-303.
    [52]
    MERZHANOV A G, BOROVINSKAYA I P. A new class of combustion processes[J]. Combustion Science and Technology, 1975, 10(5-6):195-201.
    [53]
    YAMAMOTO T, OTSUKI A, ISHIHARA K, et al. Synthesis of near net shape high density TiB/Ti composite[J]. Materials Science and Engineering:A, 1997, 239-240:647-651.
    [54]
    ZHANG X H, XU Q, HAN J C. Self-propagating high temperature combustion synthesis of TiB/Ti composites[J]. Materials Science and Engineering:A, 2003, 348(1-2):41-46.
    [55]
    TRAXELK D, BANDYOPADHYAY A. Influence of in situ ceramic reinforcement towards tailoring titanium matrix composites using laser-based additive manufacturing[J]. Additive Manufacturing,2020, 31:101004.
    [56]
    YAN Q, CHEN B, LI J S, et al. et al. Super-high-strength graphene/titanium composites fabricated by selective laser melting[J]. Carbon, 2021,174:451-462.
    [57]
    WANG J D, LI L Q, TAN C W, et al. Microstructure and tensile properties of TiCp/Ti-6Al-4V titanium matrix composites manufactured by laser melting deposition[J]. Journal of Materials Processing Technology,2018, 252:524-536.
    [58]
    刘守法,周兆锋.第二相增强金属基复合材料研究进展[J].热加工工艺, 2018, 47(4):14-16.
    [59]
    MU X N, ZHANG H M, CAI H N, et al. Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites[J]. Materials Science and Engineering:A, 2017, 687:164-174.
    [60]
    曹洪川.石墨烯增强钛基复合材料的强塑性及摩擦磨损性能研究[D].贵阳:贵州大学, 2020.
    [61]
    CAO Z, WANG X D, LI J, et al. Reinforcement with graphene nano flakes in titanium matrix composites[J]. Journal of Alloys and Compounds, 2017, 696:498-502.
    [62]
    PAN D, ZHANG X, HOU X D, et al. TiB nano-whiskers reinforced titanium matrix composites with novel nano-reticulated microstructure and high performance via composite powder by selective laser melting[J]. Materials Science and Engineering:A, 2021, 799:140137.
    [63]
    OTTE J A, ZOU J, PATEL R, et al. TiB nanowhisker reinforced titanium matrix composite with improved hardness for biomedical applications[J]. Nanomaterials (Basel, Switzerland), 2020, 10(12):E2480.
    [64]
    WEI L X, LIU X Y, GAO Y Z, et al. Synergistic strengthening effect of titanium matrix composites reinforced by graphene oxide and carbon nanotubes[J]. Materials&Design, 2021, 197:109261.
    [65]
    HU Z, TONG G, NIAN Q, et al. Laser sintered single layer graphene oxide reinforced titanium matrix nanocomposites[J]. Composites Part B:Engineering, 2016, 93:352-359.
    [66]
    LIU J Q, HU N, LIU X Y, et al. Microstructure and mechanical properties of graphene oxide-reinforced titanium matrix composites synthesized by hot-pressed sintering[J]. Nanoscale Research Letters, 2019, 14:114.
    [67]
    HUANG L J, GENG L, PENG H X. Microstructurally inhomogeneous composites:is a homogeneous reinforcement distribution optimal?[J]. Progress in Materials Science, 2015, 71:93-168.
    [68]
    HUANG L, AN Q, GENG L, et al. Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(6):e2000688.
    [69]
    LIU C, HUANG L J, GENG L, et al. In situ synthesis of (TiC+Ti3 SiC2+Ti5 Si3)/Ti-6Al-4V composites with tailored two-scale architecture[J]. Advanced Engineering Materials, 2015, 17(7):933-941.
    [70]
    YANG J H, CHEN Y Y, XIAO S L, et al. High temperature tensile properties, deformation, and fracture behavior of a hybrid-reinforced titanium alloy composite[J]. Materials Science and Engineering:A, 2020, 788:139516.
    [71]
    IMAYEV V M, GAISIN R A, IMAYEV R M, et al. Microstructure and mechanical properties of near α titanium alloy based composites prepared in situ by casting and subjected to multiple hot forging[J]. Journal of Alloys and Compounds, 2018, 762:555-564.
    [72]
    WANG B, HUANG L J, HU H T, et al. Superior tensile strength and microstructure evolution of TiB whisker reinforced Ti60 composites with network architecture after β extrusion[J]. Materials Characterization, 2015, 103:140-149.
    [73]
    AN Q, HUANG L, JIANG S, et al. Microstructure evolution and mechanical properties of TIG cladded TiB reinforced composite coating on Ti-6Al-4V alloy[J]. Vacuum, 2017, 145:312-319.
    [74]
    KIM I Y, CHOI B J, KIM Y J, et al. Friction and wear behavior of titanium matrix (TiB+TiC) com-posites[J]. Wear, 2011, 271(9-10):1962-1965.
    [75]
    AN Q, HUANG L J, BAO Y, et al. Dry sliding wear characteristics of in situ TiBw/Ti-6Al-4V composites with different network parameters[J]. Tribology International, 2018, 121:252-259.
    [76]
    RITCHIERO, GILBERT C J, MCNANEY J M, et al. Mechanics and mechanisms of fatigue damage and crack growth in advanced materials[J]. International Journal of Solids and Structures, 2000, 37(1-2):311-329.
    [77]
    TAGAWA T, WADAHARA E, MIYALA T. Fatigue crack initiation and growth in titanium alloy matrix composite[J]. PubMed, 2012.
    [78]
    TJONG S C, MAI Y W. Processing-structure-property aspects of particulate-and whisker-reinforced titanium matrix composites[J]. Composites Science and Technology, 2008, 68(3-4):583-601.
    [79]
    WANG S, HUANG L J, GENGL, et al. Significantly enhanced creep resistance of low volume fraction in situ TiBw/Ti-6Al-4V composites by architectured network reinforcements[J]. Scientific Reports, 2017, 7:40823.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1035) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return