Citation: | PENG Yu, ZHU Lei, ZHANG Yifan, FENG Li, WANG Yufei, ZOU Juntao, TANG Bin. Influences of High Magnetic Heat Treatment Interfacial Microstructure and Properties of TiAl/Ti2AlNb Diffusion Bonding Joint[J]. Development and Application of Materials, 2025, 40(1): 44-51. |
[1] |
HE W W, TANG H P, LIU H Y, et al. Microstructure and tensile properties of containerless near-isotherm-ally forged TiAl alloys[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(12): 2605-2609.
|
[2] |
KONG F T, CHEN Y Y, ZHANG D L, et al. High temperature deformation behavior of Ti-46Al-2Cr-4Nb-0.2Y alloy[J]. Materials Science and Engineering: A, 2012, 539: 107-114.
|
[3] |
PERRUT M, CARON P, THOMAS M, et al. High temperature materials for aerospace applications: Ni-based superalloys and γ-TiAl alloys[J]. Comptes Rendus Physique, 2018, 19(8): 657-671.
|
[4] |
ZHANG Y R, LIU Y C, YU L M, et al. Microstructures and tensile properties of Ti2AlNb and Mo-modified Ti2AlNb alloys fabricated by hot isostatic pressing[J]. Materials Science and Engineering: A, 2020, 776: 139043.
|
[5] |
SUN Z, ZHU X X, CHEN H Z, et al. Brazing of TiAl and Ti2AlNb alloys using high-entropy braze fillers[J]. Materials Characterization, 2022, 186: 111814.
|
[6] |
步贤政, 李宏伟, 王志敏, 等. 异种钛合金TA15与Ti2AlNb激光焊接显微组织及力学性能研究[J]. 焊接技术, 2016, 45(3): 9-11.
|
[7] |
CHEN X, XIE F Q, MA T J, et al. Microstructure evolution and mechanical properties of linear friction welded Ti2AlNb alloy[J]. Journal of Alloys and Compounds, 2015, 646: 490-496.
|
[8] |
ZOU G S, XIE E H, BAI H L, et al. A study on transient liquid phase diffusion bonding of Ti-22Al-25Nb alloy[J]. Materials Science and Engineering: A, 2009, 499(1-2): 101-105.
|
[9] |
ZHU L, LI J S, TANG B, et al. Microstructure evolution and mechanical properties of diffusion bonding high Nb containing TiAl alloy to Ti2AlNb alloy[J]. Vacuum, 2019, 164: 140-148.
|
[10] |
ZHU L, TANG B, WEI B B, et al. Strengthening mechanisms of TiAl/Ti2AlNb diffusion bonding joint after post-bonded heat treatment and hot deformation[J]. Materials Science and Engineering: A, 2021, 825: 141872.
|
[11] |
陈东风, 曹志强, 杨淼, 等. 强磁场在材料科学中的应用现状及理论分析[J]. 钢铁研究, 2007, 35(3): 58-62.
|
[12] |
任晓. 强磁场作用下镍系合金元素扩散行为研究[D]. 大连: 大连理工大学, 2010.
|
[13] |
KUSTOV S, CORRÓ M L, PONS J, et al. Entropy change and effect of magnetic field on martensitic transformation in a metamagnetic Ni-Co-Mn-In shape memory alloy[J]. Applied Physics Letters, 2009, 94(19): 191901.
|
[14] |
INOUE K, YAMAGUCHI Y, ISHII Y, et al. Magnetic-field-induced martensitic transformation of offstoichiometric single-crystal Ni2MnGa[J]. Journal of the Physical Society of Japan, 2009, 78(5): 054601.
|
[15] |
LUDTKA G M, JARAMILLO R A, KISNER R A, et al. In situ evidence of enhanced transformation kine-tics in a medium carbon steel due to a high magnetic field[J]. Scripta Materialia, 2004, 51(2): 171-174.
|
[16] |
HARADA K, TSUREKAWA S, WATANABE T, et al. Enhancement of homogeneity of grain boundary microstructure by magnetic annealing of electrodeposited nanocrystalline nickel[J]. Scripta Materialia, 2003, 49(5): 367-372.
|
[17] |
MOLODOV D A, BOLLMANN C, KONIJNENBERG P J, et al. Annealing texture and microstructure evolution in titanium during grain growth in an external magnetic field[J]. Materials Transactions, 2007, 48(11): 2800-2808.
|
[18] |
GUBERNATOROV V V, SYCHEVA T S, VLADIMIROV L R, et al. Effects of ion irradiation and magnetic field on primary recrystallization of metals[J]. The Physics of Metals and Metallography, 2009, 107(1): 68-72.
|
[19] |
丁亮. 强磁场下铝合金及钛合金扩散连接行为研究[D]. 上海: 上海交通大学, 2015.
|
[20] |
BIAN H, LEI Y Z, FU W, et al. Diffusion bonding of Ti2AlNb alloy and high-Nb-containing TiAl alloy: interfacial microstructure and mechanical properties[J]. Metals, 2018, 8(12): 1061.
|
[21] |
ZOU J, CUI Y, YANG R. Diffusion bonding of dissimilar intermetallic alloys based on Ti2AlNb and TiAl[J]. Journal of Materials Science & Technology, 2009, 25: 819-824.
|