氮含量对钒微合金钢粗晶热影响区组织和韧性的影响

师仲然, 潘涛, 王瑞珍, 王东明, 赵和明, 罗小兵, 柴锋, 杨才福

师仲然, 潘涛, 王瑞珍, 王东明, 赵和明, 罗小兵, 柴锋, 杨才福. 氮含量对钒微合金钢粗晶热影响区组织和韧性的影响[J]. 材料开发与应用, 2022, 37(2): 10-18.
引用本文: 师仲然, 潘涛, 王瑞珍, 王东明, 赵和明, 罗小兵, 柴锋, 杨才福. 氮含量对钒微合金钢粗晶热影响区组织和韧性的影响[J]. 材料开发与应用, 2022, 37(2): 10-18.
SHI Zhong-ran, PAN Tao, WANG Rui-zhen, WANG Dong-ming, ZHAO He-ming, LUO Xiao-bing, CHAI Feng, YANG Cai-fu. Effect of Nitrogen on Microstructure and Toughness of Coarse Grain Heat Affected Zone in Vanadium Microalloyed Steel[J]. Development and Application of Materials, 2022, 37(2): 10-18.
Citation: SHI Zhong-ran, PAN Tao, WANG Rui-zhen, WANG Dong-ming, ZHAO He-ming, LUO Xiao-bing, CHAI Feng, YANG Cai-fu. Effect of Nitrogen on Microstructure and Toughness of Coarse Grain Heat Affected Zone in Vanadium Microalloyed Steel[J]. Development and Application of Materials, 2022, 37(2): 10-18.

氮含量对钒微合金钢粗晶热影响区组织和韧性的影响

基金项目: 

辽宁省科技重大专项项目(No.2019JH/10100014)

山东省自然科学基金(ZR201911170022)

山东省重点研发计划(重大科技创新工程(2020CXG010305))

详细信息
    作者简介:

    师仲然,男,1986年生,博士,高级工程师。E-mail:shizhongran@cisri.com.cn

  • 中图分类号: TG142.1

Effect of Nitrogen on Microstructure and Toughness of Coarse Grain Heat Affected Zone in Vanadium Microalloyed Steel

  • 摘要: 采用焊接热模拟的方法,研究了氮含量对实验钢焊接粗晶热影响区(CGHAZ)显微组织和韧性的影响规律。结果表明:随着氮含量的增加,CGHAZ的组织从晶界铁素体、贝氏体和侧板条铁素体转变成针状铁素体、多边形铁素体和少量的贝氏体,且铁素体晶粒细化;CGHAZ韧脆转变温度(FATT50)先降低后升高,屈服强度升高。氮含量从0.004 4%增加到0.009 4%时,有效晶粒尺寸减小,导致CGHAZ的FATT50降低;氮含量从0.009 4%增加到0.019 0%时,CGHAZ中固溶氮、屈服强度增量对FATT50的综合作用大于晶粒的细化作用,导致FATT50升高。
    Abstract: Microstructures and toughness of coarse grain heat affected zones(CGHAZ) in experimental steels with different nitrogen contents are studied by welding thermal simulation.Resultsindicate that with the increase of nitrogen content, CGHAZ microstructure changes from grain boundary ferrite, bainite and side lath ferrite to acicular ferrite, polygonal ferrite and a small amount of bainite, with the ferrite grains refined. The ductile-brittle transition temperature(FATT50) of CGHAZ steel decreases first and then increases, meanwhile the yield strength rises. When the nitrogen content increases from 0.004 4% to 0.009 4%, the effective grain size decreases and the FATT50 of CGHAZ decreases. When the nitrogen content increases from 0.009 4% to 0.019 0%, the combined influence of solid solution nitrogen and yield strength increment on FATT50 is greater than that of grain refinement, leading to the increase of FATT50.
  • [1]

    HU J,DU L X,WANG J J,et al.Effect of welding heat input on microstructures and toughness in simulated CGHAZ of V-N high strength steel[J].Materials Science and Engineering:A,2013,577:161-168.

    [2]

    HU J,DU L X,WANG J J.Effect of V on intragranular ferrite nucleation of high Ti bearing steel[J].Scripta Materialia,2013,68(12):953-956.

    [3]

    SHI Z R,YANG C F,WANG R Z,et al.Effect of nitrogen on the microstructures and mechanical properties in simulated CGHAZ of vanadium microalloyed steel varied with different heat inputs[J].Materials Science and Engineering:A,2016,649:270-281.

    [4]

    FANG F,YONG Q L,YANG C F,et al.Microstructure and precipitation behavior in HAZ of V and Ti microalloyed steel[J].Journal of Iron and Steel Research,International,2009,16(3):68-77.

    [5]

    HANNERZ N E.Weld metal and HAZ toughness and hydrogen cracking susceptibility of HSLA steels as influenced by Nb,Al,V,Ti and N[C]//ROTHWELL A B,GRAY J M.Welding of HSLA (Microalloyed) Structural Steels,1976:365-401.

    [6]

    HANNERZ N E,JONSSON-HOLMQUIST B M.Influence of vanadium on the heat-affected-zone properties of mild steel[J].Metal Science,1974,8(1):228-234.

    [7]

    LOBERG B,NORDGREN A,STRID J,et al.The role of alloy composition on the stability of nitrides in Ti-microalloyed steels during weld thermal cycles[J].Metallurgical Transactions A,1984,15(1):33-41.

    [8]

    ZAJAC S,SIWEKI T,SVENSSON L.Influence of plate production processing route,heat input and nitrogen on the HAZ toughness in Ti-V microalloyed[C]//International Conference on Processing Microstructure and Properites of Microalloyed and Other Modern High Strength Low alloy steels,Pennsylvania:Iron and Steel Society,1992:511.

    [9]

    GUO A M,MISRA R D K,LIU J B,et al.An analysis of the microstructure of the heat-affected zone of an ultra-low carbon and niobium-bearing acicular ferrite steel using EBSD and its relationship to mechanical properties[J].Materials Science and Engineering:A,2010,527(23):6440-6448.

    [10]

    FAN L,ZHOU D H,WANG T L,et al.Tensile properties of an acicular ferrite and martensite/austenite constituent steel with varying cooling rates[J].Materials Science and Engineering:A,2014,590:224-231.

    [11]

    HWANG B,KIM Y G,LEE S,et al.Effective grain size and charpy impact properties of high-toughness X70 pipeline steels[J].Metallurgical and Materials Transactions A,2005,36(8):2107-2114.

    [12]

    XIONG Z H,LIU S L,WANG X M,et al.The contribution of intragranular acicular ferrite microstructural constituent on impact toughness and impeding crack initiation and propagation in the heat-affected zone (HAZ) of low-carbon steels[J].Materials Science and Engineering:A,2015,636:117-123.

    [13]

    GUTIéRREZ I.Effect of microstructure on the impact toughness of Nb-microalloyed steel:Generalisation of existing relations from ferrite-pearlite to high strength microstructures[J].Materials Science and Engineering:A,2013,571:57-67.

    [14]

    IZA-MENDIA A,GUTIéRREZ I.Generalization of the existing relations between microstructure and yield stress from ferrite-pearlite to high strength steels[J].Materials Science and Engineering:A,2013,561:40-51.

    [15]

    ZHANG L,KANNENGIESSER T.Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel[J].Materials Science and Engineering:A,2014,613:326-335.

    [16]

    GLADMAN T,MCIVOR I D,PICKERING F B.Some aspects of the structure-property relationships in high-carbon ferrite-pearlite steels[J].J Iron Steel Inst,1972:916-930.

    [17] 雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006.
    [18]

    HANSEN N,HUANG X,WINTHER G.Grain orientation,deformation microstructure and flow stress[J].Materials Science and Engineering:A,2008,494(1-2):61-67.

    [19]

    LI Y,WILSON J A,CRAVEN A J,et al.Dispersion strengthening in vanadium microalloyed steels processed by simulated thin slab casting and direct charging Part 1-Processing parameters,mechanical properties and microstructure[J].Materials Science and Technology,2007,23(5):509-518.

    [20]

    GUTIéRREZ I.Effect of microstructure on the impact toughness of Nb-microalloyed steel:Generalisation of existing relations from ferrite-pearlite to high strength microstructures[J].Materials Science and Engineering:A,2013,571:57-67.

    [21]

    ADRIAN H,PICKERING F B.Effect of titanium additions on austenite grain growth kinetics of medium carbon V-Nb steels containing 0.008-0.018% N[J].Materials Science and Technology,1991,7(2):176-182.

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-15
  • 网络出版日期:  2022-06-10
  • 刊出日期:  2022-06-10

目录

    /

    返回文章
    返回