留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同碳链长度的硅烷偶联剂对纳米SiO2改性研究

咸春龙 李钦哲 柳江砚 雷鹏 吴航 王福会

咸春龙, 李钦哲, 柳江砚, 雷鹏, 吴航, 王福会. 不同碳链长度的硅烷偶联剂对纳米SiO2改性研究[J]. 材料开发与应用, 2023, 38(4): 81-88.
引用本文: 咸春龙, 李钦哲, 柳江砚, 雷鹏, 吴航, 王福会. 不同碳链长度的硅烷偶联剂对纳米SiO2改性研究[J]. 材料开发与应用, 2023, 38(4): 81-88.
XIAN Chunlong, LI Qinzhe, LIU Jiangyan, LEI Peng, WU Hang, WANG Fuhui. Study on Modification of Nano-SiO2 by Silane Coupling Agent with Different Carbon Chain Lengths[J]. Development and Application of Materials, 2023, 38(4): 81-88.
Citation: XIAN Chunlong, LI Qinzhe, LIU Jiangyan, LEI Peng, WU Hang, WANG Fuhui. Study on Modification of Nano-SiO2 by Silane Coupling Agent with Different Carbon Chain Lengths[J]. Development and Application of Materials, 2023, 38(4): 81-88.

不同碳链长度的硅烷偶联剂对纳米SiO2改性研究

基金项目: 

国家自然科学基金项目(U20A20333)

详细信息
    作者简介:

    咸春龙,男,1993生,硕士研究生,研究方向为涂层的腐蚀与防护。E-mail:1157530265@qq.com

    通讯作者:

    吴航,男,副教授,硕士生导师。E-mail:wuhang@mail.neu.edu.cn

  • 中图分类号: TQ127.2

Study on Modification of Nano-SiO2 by Silane Coupling Agent with Different Carbon Chain Lengths

  • 摘要: 使用不同碳链长度的硅烷偶联剂(甲基三甲氧基硅烷、丙基三甲氧基硅烷、辛基三甲氧基硅烷、十六烷基三甲氧基硅烷)分别对纳米SiO2进行改性。采用FTIR、XPS、XRD、TGA等表征方法研究了SiO2粒子改性前后的化学结构和接枝率;采用激光粒度测试和TEM研究了纳米SiO2颗粒的粒径分布和微观形貌;采用沉降实验和接触角观察了纳米SiO2粒子的水中分散性状态及其亲疏水性能。结果表明,硅烷偶联剂成功接枝在了纳米SiO2颗粒表面。随着硅烷偶联剂碳链长度的增加,改性后SiO2平均粒径呈现先减小后增大的趋势,团聚现象减弱。经十六烷基三甲氧基硅烷改性的纳米SiO2颗粒接触角从11.7°提高至108.2°,由亲水性转变为疏水性。

     

  • [1] MUHAMAD M S, SALIM M R, LAU W J. Surface modification of SiO2 nanoparticles and its impact on the properties of PES-based hollow fiber membrane[J]. RSC Advances, 2015, 5(72):58644-58654.
    [2] ZOU H, WU S S, SHEN J. Polymer/silica nanocomposites:preparation, characterization, properties, and applications[J]. Chemical Reviews, 2008, 108(9):3893-3957.
    [3] WANG C, YANG H, CHEN F, et al. Influences of VTMS/SiO2 ratios on the contact angle and morphology of modified super-hydrophobic silicon dioxide material by vinyl trimethoxy silane[J]. Results in Physics, 2018, 10:891-902.
    [4] LIU X, WANG Z Y, ZHAO C J, et al. Preparation and characterization of silane-modified SiO2 particles reinforced resin composites with fluorinated acrylate polymer[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80:11-19.
    [5] DOLATZADEH F, MORADIAN S, JALILI M M. Influence of various surface treated silica nanoparticles on the electrochemical properties of SiO2/polyureth-ane nanocoatings[J]. Corrosion Science, 2011, 53(12):4248-4257.
    [6] MACHRAFI H, LEBON G, IORIO C S. Effect of volumefraction dependent agglomeration of nanoparticles on the thermal conductivity of nanocomposites:applications to epoxy resins, filled by SiO2, AlN and MgO nanoparticles[J]. Composites Science and Technol-ogy, 2016, 130:78-87.
    [7] WANGY, GU G S, WEI F, et al. Fluidization and agglomerate structure of SiO2 nanoparticles[J]. Powder Technology, 2002, 124(1-2):152-159.
    [8] TIAN S J, GAO W, LIU Y J, et al. Effects of surface modification Nano-SiO2 and its combination with surfactant on interfacial tension and emulsion stability[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 595:124682.
    [9] TANG X C, ZHOU B B, CHEN C, et al. Regulation of polymerizable modification degree of nano-SiO2 and the effects on performance of composite microsphere for conformance control[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 585:124100.
    [10] LI H Y, ZHANG Z S, MA X F, et al. Synthesis and characterization of epoxy resin modified with nano-SiO2 and γ-glycidoxypropyltrimethoxy silane[J]. Surface and Coatings Technology, 2007, 201(9-11):5269-5272.
    [11] PAN G S, GU Z H, ZHOU Y, et al. Preparation of silane modified SiO2 abrasive particles and their Chemical Mechanical Polishing (CMP) performances[J]. Wear, 2011, 273(1):100-104.
    [12] WANG Z H, YUAN L, LIANG G Z, et al. Mechanically durable and self-healing super-hydrophobic coating with hierarchically structured KH570 modified SiO2-decorated aligned carbon nanotube bundles[J]. Chemical Engineering Journal, 2021, 408:127263.
    [13] YUAN Y H,PENG C, CHEN D, et al. Synthesis of a coupling agent containing polyurethane chain and its influence on improving the dispersion of SiO2 nanoparticles in epoxy/amine thermoset[J]. Composites Part A:Applied Science and Manufacturing, 2021, 149:106573.
    [14] LI C X, FENG D D, WANG X K, et al. A thermochemical approach to enhance hydrophobicity of SiC/SiO2 powder using γ-methacryloxypropyl trimethoxy silane and octylphenolpolyoxyethylene ether (7)[J]. Applied Surface Science, 2016, 360:45-51.
    [15] HSIANG H I, CHANG Y L, CHEN C Y, et al. Si-lane functional effects on the rheology and abrasion resistance of transparent SiO2/UV-curable resin nano-composites[J]. Materials Chemistry and Physics, 2010, 120(2-3):476-479.
    [16] STOJANOVIC D, ORLOVIC A, GLISIC S B, et al. Preparation of MEMO silanecoated SiO2 nanoparticles under high pressure of carbon dioxide and ethanol[J]. The Journal of Supercritical Fluids, 2010, 52(3):276-284.
    [17] 刘琪, 崔海信, 顾微, 等. 硅烷偶联剂KH-570对纳米二氧化硅的表面改性研究[J]. 纳米科技, 2009(3):15-18.
    [18] CAPPELLETTI G, FERMO P. Hydrophobic and superhydrophobic coatings for limestone and marble conservation[M]//Smart Composite Coatings and Membranes. Amsterdam:Elsevier, 2016:421-452.
    [19] ANITHA C, AZIM S S, MAYAVAN S. Fluorine free superhydrophobic surface textured silica particles and its dynamics-Transition from impalement to impingement[J]. Journal of Alloys and Compounds, 2017, 711:197-204.
    [20] CAI Y, LI J, YI L M, et al. Fabricating superhydrophobic and oleophobic surface with silica nanoparti-cles modified by silanes and environment-friendly fluorinated chemicals[J]. Applied Surface Science, 2018, 450:102-111.
    [21] GURAV A B, XU Q F, LATTHE S S, et al. Superhydrophobic coatings prepared from methyl-modified silica particles using simple dip-coating method[J]. Ceramics International, 2015, 41(2):3017-3023.
    [22] DASH S, MISHRA S, PATEL S, et al. Organically modified silica:synthesis and applications due to its surface interaction with organic molecules[J]. Advances in Colloid and Interface Science, 2008, 140(2):77-94.
    [23] SOHRABI B, MANSOURI F, KHALIFAN S Z. The study of glass superhydrophobicity by modified SiO2-hexadecyltrimethoxysilane (SiO2-m-HDTMS) nanoparticles and mixture of surfactants[J]. Progress in Organic Coatings, 2019, 131:73-81.
    [24] LOU M Y, WANG D P, HUANG W H, et al. Effect of silane-coupling agents on synthesis and character of core-shell SiO2 magnetic microspheres[J]. Journal of Magnetism and Magnetic Materials, 2006, 305(1):83-90.
    [25] KE Q P, FU W Q, WANG S, et al. Facile preparation of superhydrophobic biomimetic surface based on octadecyltrichlorosilane and silica nanoparticles[J]. ACS Applied Materials & Interfaces, 2010, 2(8):2393-2398.
  • 加载中
计量
  • 文章访问数:  97
  • HTML全文浏览量:  9
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-08
  • 网络出版日期:  2023-09-13

目录

    /

    返回文章
    返回