留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光深熔焊接等离子体温度光谱测量对比

谢顺 祝宝琦 邹江林

谢顺, 祝宝琦, 邹江林. 激光深熔焊接等离子体温度光谱测量对比[J]. 材料开发与应用, 2023, 38(5): 70-74,85.
引用本文: 谢顺, 祝宝琦, 邹江林. 激光深熔焊接等离子体温度光谱测量对比[J]. 材料开发与应用, 2023, 38(5): 70-74,85.
XIE Shun, ZHU Baoqi, ZOU Jianglin. Comparison of Spectrometric Measurements of Plasma Temperature in Laser Penetration Welding[J]. Development and Application of Materials, 2023, 38(5): 70-74,85.
Citation: XIE Shun, ZHU Baoqi, ZOU Jianglin. Comparison of Spectrometric Measurements of Plasma Temperature in Laser Penetration Welding[J]. Development and Application of Materials, 2023, 38(5): 70-74,85.

激光深熔焊接等离子体温度光谱测量对比

基金项目: 

国家自然科学基金(52175375)

详细信息
    作者简介:

    谢顺,男,1996年生,博士研究生,主要从事激光与材料相互作用的研究。

    通讯作者:

    邹江林,男,1982年生,博士,副研究员,博士生导师,主要从事激光与材料相互作用、激光加工过程监测、激光加工新工艺、新方法及外围技术与系统等方面的研究。E-mail:zoujianglin1@163.com

  • 中图分类号: TG456

Comparison of Spectrometric Measurements of Plasma Temperature in Laser Penetration Welding

  • 摘要: 采用光谱仪探测CO2激光深熔焊接等离子体及光纤激光焊接羽辉的光谱信号,分别利用波尔兹曼图法和相对强度法计算获取CO2激光焊接等离子体的温度,并以较优的一种方法计算光纤激光羽辉温度。结果发现,对于同一个等离子体,采用相对强度法时,选择不同谱线获得的等离子体温度差异很大;当采用波尔兹曼图法时,使用不同谱线组合获得的等离子体温度非常接近。通过对两种方法获得结果的分析,认为采用波尔兹曼图法计算得到的等离子体温度精度更高,更具有可比性。而后采用波尔兹曼图法计算羽辉温度,发现光纤激光焊接羽辉辐射的谱线中连续谱强度不可忽略,与等离子体温度的计算略有不同。

     

  • [1] SETO N, KATAYAMA S, MIZUTANI M, et al. Relationship between plasma and keyhole behavior during CO2 laser welding[C]//Proc SPIE 3888, High-Power Lasers in Manufacturing, 2000, 3888: 61-68.
    [2] SZYMANSKI Z, HOFFMAN J, KURZYNA J. Plasma plume oscillations during welding of thin metal sheets with a CW CO2 laser[J]. Journal of Physics D: Applied Physics, 2001, 34(2): 189-199.
    [3] POUEYO-VERWAERDE A, FABBRO R, DESHO-RS G, et al. Experimental study of laser-induced plasma in welding conditions with continuous CO2 laser[J]. Journal of Applied Physics, 1993, 74(9): 5773-5780.
    [4] SZYMANSKI Z, KURZYNA J, KALITA W. The sp-ectroscopy of the plasma plume induced during laser welding of stainless steel and titanium[J]. Journal of Physics D: Applied Physics, 1997, 30(22): 3153-3162.
    [5] HOFFMAN J, SZYMA SKI Z. Time-dependent spectroscopy of plasma plume under laser welding conditions[J]. Journal of Physics D: Applied Physics, 2004, 37(13): 1792-1799.
    [6] RIBIC B, BURGARDT P, DEBROY T. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma[J]. Journal of Applied Physics, 2011, 109(8): 1-10.
    [7] MILLER R, DEBROY T. Energy absorption by meta-lvapor-dominated plasma during carbon dioxide laser welding of steels[J]. Journal of Applied Physics, 1990, 68(5): 2045-2050.
    [8] SZYMANSKI Z, PERADZYNSKI Z, KURZYNA J, et al. Spectroscopic study of a supersonic jet of laser-heated argon plasma[J]. Journal of Physics D: Applied Physics, 1997, 30(6): 998-1006.
    [9] TU J F, INOUE T, MIYAMOTO I. Quantitative characterization of keyhole absorption mechanisms in 20 kW-class CO2 laser welding processes[J]. Journal of Physics D: Applied Physics, 2003, 36(2): 192-203.
    [10] LIU L M, HAO X F. Study of the effect of low-power pulse laser on arc plasma and magnesium alloy target in hybrid welding by spectral diagnosis technique[J]. Journal of Physics D: Applied Physics, 2008, 41(20): 205202.
    [11] KAWAHITO Y, KINOSHITA K, MATSUMOTO N, et al. Effect of weakly ionised plasma on penetration of stainless steel weld produced with ultra high power density fibre laser[J]. Science and Technology of Welding and Joining, 2008, 13(8): 749-753.
    [12] KAWAHITO Y, MATSUMOTO N, MIZUTANI M, et al. Characterisation of plasma induced during high power fibre laser welding of stainless steel[J]. Science and Technology of Welding and Joining, 2008, 13(8): 744-748.
    [13] SABBAGHZADEH J, DADRAS S, TORKAMANY M J. Comparison of pulsed Nd:YAG laser welding qualitative features with plasma plume thermal characteris-tics[J]. Journal of Physics D: Applied Physics, 2007, 40(4): 1047-1051.
    [14] LACROIX D, JEANDEL G, BOUDOT C. Spectrosc-opic characterization of laser-induced plasma created during welding with a pulsed Nd: YAG laser[J]. Journal of Applied Physics, 1997, 81(10): 6599-6606.
    [15] National Institute of Standards and Technology data-base. https://physics.nist.gov/PhysRefData/ASD/lines_form.html.
    [16] SATTMANN R, STURM V, NOLL R. Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd: YAG laser pulses[J]. Journal of Physics D: Applied Physics, 1995, 28(10): 2181-2187.
    [17] FUHR J R, MARTIN G A, WLESE W L, et al. Atomic transition probabilities for iron, cobalt, and nickel (a critical data compilation of allowed lines)[J]. Journal of Physical and Chemical Reference Data, 1981, 10(2): 305-566.
    [18] ZOU J L, XIAO R S, HUANG T, et al. Plume temperature diagnosis with the continuous spectrum and Wien’s displacement law during high power fiber laser welding[J]. Laser Physics, 2014, 24(10): 106007.
  • 加载中
计量
  • 文章访问数:  43
  • HTML全文浏览量:  1
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-23
  • 网络出版日期:  2023-11-07

目录

    /

    返回文章
    返回