Development of Three-dimensional Characterizations and Electro-pulse Repairing Technology for Forming Defects within Ti Component by Laser Additive Manufacturing
-
摘要: 增材制造技术具有设计自由度大、无需模具、可近净成形的优点,在航空航天、海洋工程、石油工程等领域有着广阔的应用前景。然而,以钛合金为代表的高强合金由于其热导率低、充型能力差的本征属性,导致激光成形构件易出现气孔、热裂纹、冷裂纹等成形缺陷,从而降低其力学性能。近年来,为了深入挖掘成形缺陷形成的微观机理,研究人员研发了多种缺陷的表征技术,并在此基础上开发了缺陷修复技术。本研究从缺陷三维表征和电脉冲修复技术两个角度出发,总结了目前成形缺陷三维无损表征技术和无损修复技术的进展,并对未来激光增材制造成形件的缺陷分析和修复技术进行了展望。Abstract: Additive manufacturing technology has the advantages of large design freedom, no need for dies, and near net forming, so the technology has broad application prospects in aerospace, ocean engineering, petroleum engineering and other fields. However, due to the low heat conductivity and limitation of mold-filling capacity of high-strength alloys such as titanium alloys, their laser-formed components are prone to form defects such as pores, hot cracks, and cold cracks, which will reduce their mechanical properties. Recently, in order to dig out the micro-mechanism of forming defects, researchers have introduced several characterizing methods for analyzing the defects. In addition, on the basis of the results from the defects characterizations, technologies have been generated for repairing defects. In this article, we summarize the development of non-damaged three-dimensional characterizing technologies for forming defects, as well as the non-damaged defects repairing technologies. In the end, we also indicate the prospect of defects analysis and reparation for the components by laser additive manufacturing.
-
[1] 王金友,葛志明,周彦邦.钛合金在航空上的应用[M].上海:上海科技出版社, 1985. [2] 訾群.钛合金研究新进展及应用现状[J].钛工业进展, 2008, 25(2):23-27. [3] 王华,赵坦,陈妍.载人深潜器耐压壳体用金属材料研发进展[J].材料开发与应用, 2023, 38(3):88-95. [4] 张文娟,杨帆,陈超鹏.钛合金微结构力学性能和氢扩散分析[J].材料开发与应用, 2023, 38(3):43-50. [5] 王华明,张述泉,王向明.大型钛合金结构件激光直接制造的进展与挑战[J].中国激光, 2009, 36(12):3204-3209. [6] 林鑫,黄卫东.应用于航空领域的金属高性能增材制造技术[J].中国材料进展, 2015, 34(9):684-688. [7] 周瀚森,施佳慧,徐博文,等.船舶增材制造的认可与船级社标准分析[J].材料开发与应用, 2023, 38(3):63-68. [8] DAI D H, GU D D. Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg Powder[J]. International Journal of Machine Tools and Manufacture, 2015, 88:95-107. [9] GONG H, RAFI K, STARR T, et al. Effect of defects on fatigue tests of as-built Ti-6Al-4V parts fabricated by selective laser melting:solid freeform fabrication symposium[C]//23rd Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference. Austin:the University of Texas at Austin, 2012. [10] DADBAKHSH S, HAO L, SEWELL N. Effect of selective laser melting layout on the quality of stainless steel parts[J]. Rapid Prototyping Journal, 2012, 18(3):241-249. [11] WEI Q S, ZHAO X, WANG L, et al. Effects of the processing parameters on the forming quality of stainless steel parts by selective laser melting[J]. Advanced Materials Research, 2011, 189-193:3668-3671. [12] 赵沧,杨源祺,师博,等.金属激光增材制造微观结构和缺陷原位实时监测[J].科学通报, 2022, 67(25):3036-3053. [13] LE K Q, TANG C, WONG C H. A study on the influence of scanning strategies on the levelness of the melt track in selective laser melting process of stainless steel powder[J]. JOM, 2018, 70(10):2082-2087. [14] WANG L, WEI Q S, SHI Y S, et al. Experimental investigation into the single-track of selective laser melting of IN625[J]. Advanced Materials Research, 2011, 233-235:2844-2848. [15] PENG T, CHEN C. Influence of energy density on energy demand and porosity of 316L stainless steel fabricated by selective laser melting[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, 5(1):55-62. [16] RASHID R, MASOOD S H, RUAN D, et al. Effect of scan strategy on density and metallurgical properties of 17-4PH parts printed by Selective Laser Melting (SLM)[J]. Journal of Materials Processing Technology, 2017, 249:502-511. [17] JHABVALA J, BOILLAT E, ANTIGNAC T, et al. On the effect of scanning strategies in the selective laser melting process[J]. Virtual and Physical Prototyping, 2010, 5(2):99-109. [18] CHENG B, SHRESTHA S, CHOU Y K. Stress and deformation evaluations of scanning strategy effect in selective laser melting[C]//Volume 3:Joint MSEC-NAMRC Symposia. Blacksburg:American Society of Mechanical Engineers, 2016:240-251. [19] PARRY L, ASHCROFT I A, WILDMAN R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufacturing, 2016, 12:1-15. [20] GONG H J, RAFI K, GU H F, et al. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes[J]. Additive Manufacturing, 2014, 1-4:87-98. [21] BISWAL R, SYED A K, ZHANG X. Assessment of the effect of isolated porosity defects on the fatigue performance of additive manufactured titanium alloy[J]. Additive Manufacturing, 2018, 23:433-442. [22] WILSON-HEID A E, BEESE A M. Combined effects of porosity and stress state on the failure behavior of laser powder bed fusion stainless steel 316L[J]. Additive Manufacturing, 2021, 39:101862. [23] ROMANO S, ABEL A, GUMPINGER J, et al. Qu-ality control of AlSi10Mg produced by SLM:Metallography versus CT scans for critical defect size assessment[J]. Additive Manufacturing, 2019, 28:394-405. [24] SHERIDAN L, SCOTT-EMUAKPOR O E, GEORGE T, et al. Relating porosity to fatigue failure in additively manufactured alloy 718[J]. Materials Science and Engineering:A, 2018, 727:170-176. [25] LE V D, PESSARD E, MOREL F, et al. Influence of porosity on the fatigue behaviour of additively fabricated TA6V alloys[J]. MATEC Web of Conferences, 2018, 165:02008. [26] GONG H J, RAFI K, GU H F, et al. Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting[J]. Materials&Design, 2015, 86:545-554. [27] GALARRAGA H, LADOS D A, DEHOFF R R, et al. Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM)[J]. Additive Manufacturing, 2016, 10:47-57. [28] TAMMAS-WILLIAMS S, WITHERS P J, TODD I, et al. The influence of porosity on fatigue crack initiation in additively manufactured titanium components[J]. Scientific Reports, 2017, 7:7308. [29] HRABE N, GNÄUPEL-HEROLD T, QUINN T. Fatigue properties of a titanium alloy (Ti-6Al-4V) fabricated via electron beam melting (EBM):effects of internal defects and residual stress[J]. International Journal of Fatigue, 2017, 94:202-210. [30] MARGERIT P, WEISZ-PATRAULT D, RAVICH-ANDAR K, et al. Tensile and ductile fracture properties of as-printed 316L stainless steel thin walls obtained by directed energy deposition[J]. Additive Manufacturing, 2021, 37:101664. [31] 殷杰,郝亮,杨亮亮,等.激光选区熔化增材制造中金属蒸气与飞溅相互作用研究[J].中国激光, 2022, 49(14):1402202. [32] CUNNINGHAM R, ZHAO C, PARAB N, et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed X-ray imaging[J]. Science, 2019, 363(6429):849-852. [33] 赵永庆.钛合金相变及热处理[M].长沙:中南大学出版社, 2012. [34] VIJAYARAGHAVAN T V, MARGOLIN H. The effect of matrix strength on void nucleation and growth in an alpha-beta titanium alloy, CORONA-5[J]. Metallurgical Transactions A, 1988, 19(3):591-601. [35] NARENDRNATH K R, MARGOLIN H. The effect of matrix strength on void nucleation and growth in a widmanstätten alpha-beta titanium alloy, CORONA-5[J]. Metallurgical Transactions A, 1988, 19(5):1163-1171. [36] VIJAYARAGHAVAN T V, MARGOLIN H. Observations on void nucleation and growth in α/β Ti-Mn alloys[J]. Metallurgical Transactions A, 1988, 19(5):1311-1317. [37] KRISHNA M R Y, KUTUMBARAO V V, RAMA R P. Influence of microstructure on void nucleation and growth in a near-α titanium alloy IMI 685[J]. Materials Science and Engineering:A, 1989, 110:193-202. [38] DANG N, LIU L Y, MAIRE E, et al. Analysis of shear stress promoting void evolution behavior in an α/β Ti alloy with fully lamellar microstructure[J]. Materials Science and Engineering:A, 2018, 737:27-39. [39] ZHANG X C, ZHONG F, SHAO J B, et al. Failure mechanism and mode of Ti-6Al-4V alloy under uniaxial tensile loading:experiments and micromechanical modeling[J]. Materials Science and Engineering:A, 2016, 676:536-545. [40] DANG N, CHEN S, LIU L Y, et al. Analysis of hybrid fracture in α/β titanium alloy with lamellar microstructure[J]. Materials Science and Engineering:A, 2019, 744:54-63. [41] THIJS L, VERHAEGHE F, CRAEGHS T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9):3303-3312. [42] LI J F, WEI Z Y. Process optimization and microstructure characterization of Ti6Al4V manufactured by selective laser melting[J]. IOP Conference Series:Materials Science and Engineering, 2017, 269:012026. [43] RAFI H K, KARTHIK N V, GONG H J, et al. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting[J]. Journal of Materials Engineering and Performance, 2013, 22(12):3872-3883. [44] SONG B, DONG S J, ZHANG B C, et al. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V[J]. Materials&Design, 2012, 35:120-125. [45] SONG B, DONG S J, LIAO H L, et al. Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering[J]. The International Journal of Advanced Manufacturing Technology, 2012, 61(9):967-974. [46] SUN J F, YANG Y Q, WANG D. Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method[J]. Optics Laser Technology, 2013, 49:118-124. [47] SIMONELLI M, TSE Y Y, TUCK C. Microstructure of Ti-6Al-4V produced by selective laser melting[J]. Journal of Physics:Conference Series, 2012, 371:012084. [48] SIMONELLI M, TSE Y Y, TUCK C. On the texture formation of selective laser melted Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2014, 45(6):2863-2872. [49] BOURGEOIS M, FEAUGAS X, CLAVEL M. Fract-ure of an α/β titanium alloy under stress triaxiality states at 773 K[J]. Scripta Materialia, 1996, 34(9):1483-1490. [50] HELBERT A L, FEAUGAS X, CLAVEL M. The influence of stress trlaxiality on the damage mechanisms in an equiaxed α/β Ti-6AI-4V alloy[J]. Metallurgical and Materials Transactions A, 1996, 27(10):3043-3058. [51] SEMIATIN S L, SEETHARAMAN V, GHOSH A K, et al. Cavitation during hot tension testing of Ti-6Al-4V[J]. Materials Science and Engineering:A, 1998, 256(1-2):92-110. [52] NICOLAOU P D, SEMIATIN S L. Modeling of cavity coalescence during tensile deformation[J]. Acta Materialia, 1999, 47(13):3679-3686. [53] NICOLAOU P D, SEMIATIN S L. An analysis of the effect of continuous nucleation and coalescence on cavitation during hot tension testing[J]. Acta Materialia, 2000, 48(13):3441-3450. [54] XUE Q, MEYERS M A, NESTERENKO V F. Self-organization of shear bands in titanium and Ti-6Al-4V alloy[J]. Acta Materialia, 2002, 50(3):575-596. [55] NICOLAOU P D, SEMIATIN S L. An experimental and theoretical investigation of the influence of stress state on cavitation during hot working[J]. Acta Materialia, 2003, 51(3):613-623. [56] BIELER T R, NICOLAOU P D, SEMIATIN S L. An experimental and theoretical investigation of the effect of local colony orientations and misorientation on cavitation during hot working of Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2005, 36(1):129-140. [57] KUMAR J, SRIVATHSA B, KUMAR V. Stress triaxiality effect on fracture behavior of IMI-834 titanium alloy:a micromechanics approach[J]. Materials&Design, 2009, 30(4):1118-1123. [58] ROY S, SUWAS S. On the absence of shear cracking and grain boundary cavitation in secondary tensile regions of Ti-6Al-4V-0.1B alloy during hot (α+β)-compression[J]. Philosophical Magazine, 2014, 94(5):447-463. [59] OSOVSKI S, SRIVASTAVA A, WILLIAMS J C, et al. Grain boundary crack growth in metastable titanium β alloys[J]. Acta Materialia, 2015, 82:167-178. [60] ALLAHVERDIZADEH N, GILIOLI A, MANES A, et al. An experimental and numerical study for the damage characterization of a Ti-6AL-4V titanium alloy[J]. International Journal of Mechanical Sciences, 2015, 93:32-47. [61] MAIRE E, WITHERS P J. Quantitative X-ray tomography[J]. International Materials Reviews, 2014, 59(1):1-43. [62] WU S C, XIAO T Q, WITHERS P J. The imaging of failure in structural materials by synchrotron radiation X-ray microtomography[J]. Engineering Fracture Mechanics, 2017, 182:127-156. [63] DANG N, LIU L Y, ADRIEN J, et al. Crack nucleation and growth in α/β titanium alloy with lamellar microstructure under uniaxial tension:3D X-ray tomography analysis[J]. Materials Science and Engineering:A, 2019, 747:154-160. [64] YADROITSEV I, KRAKHMALEV P, YADROITSA-VA I, et al. Qualification of Ti6Al4V ELI alloy produced by laser powder bed fusion for biomedical applications[J]. JOM, 2018, 70(3):372-377. [65] ABBASI K. X-ray tomography and serial sectioning investigation of creep damage in copper[D]. Saint-Etienne:Ecole des Mines de Saint-Etienne, 2013. [66] HOLZER L, CANTONI M. Review of FIB tomography[M]. Nanofabrication using focused ion and electron Beams, Oxford:Oxford University Press, 2011. [67] KRAL M V, MANGAN M A, SPANOS G, et al. Three-dimensional analysis of microstructures[J]. Materials Characterization, 2000, 45(1):17-23. [68] 贾志宏,王雪丽,邢远,等.基于FIB的三维表征分析技术及应用进展[J].中国材料进展, 2013, 32(12):735-741. [69] SHARMA H, VAN BOHEMEN S M C, PETROV R H, et al. Three-dimensional analysis of microstructures in titanium[J]. Acta Materialia, 2010, 58(7):2399-2407. [70] GHOSH S, BHANDARI Y, GROEBER M. CAD-based reconstruction of 3D polycrystalline alloy microstructures from FIB generated serial sections[J]. Computer-Aided Design, 2008, 40(3):293-310. [71] REQUENA G, CLOETENS P, ALTENDORFER W, et al. Sub-micrometer synchrotron tomography of multiphase metals using Kirkpatrick-Baez optics[J]. Scripta Materialia, 2009, 61(7):760-763. [72] LUDWIG W, REISCHIG P, KING A, et al. Three-dimensional grain mapping by X-ray diffraction contrast tomography and the use of Friedel pairs in diffraction data analysis[J]. Review of Scientific Instruments, 2009, 80(3):033905. [73] Dang N. 3D visualization of microstructure morphology and damage evolution for dual phase titanium alloy[D]. Lyon:INSA de Lyon, 2020. [74] CHOO H, WHITE L P, XIAO X H, et al. Deformation and fracture behavior of a laser powder bed fusion processed stainless steel:in situ synchrotron X-ray computed microtomography study[J]. Additive Manufacturing, 2021, 40:101914. [75] ZIÓŁKOWSKI G, GRUBER K, TOKARCZYK E, et al. X-ray Computed Tomography for the ex-situ mechanical testing and simulation of additively manufactured IN718 samples[J]. Additive Manufacturing, 2021, 45:102070. [76] SANKARA NARAYANAN T S N, KIM J, JEONG H E, et al. Enhancement of the surface properties of selective laser melted maraging steel by large pulsed electron-beam irradiation[J]. Additive Manufacturing, 2020, 33:101125. [77] KAN W H, NADOT Y, FOLEY M, et al. Factors that affect the properties of additively-manufactured AlSi10Mg:Porosity versus microstructure[J]. Additive Manufacturing, 2019, 29:100805. [78] YEGYAN K A, BAI Y, EKLUND A, et al. The effects of Hot Isostatic Pressing on parts fabricated by binder jetting additive manufacturing[J]. Additive Manufacturing, 2018, 24:115-124. [79] CHEN C Y, XIE Y C, YAN X C, et al. Effect of hot isostatic pressing (HIP) on microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufacturing[J]. Additive Manufacturing, 2019, 27:595-605. [80] GOEL S, SITTIHO A, CHARIT I, et al. Effect of post-treatments under hot isostatic pressure on microstructural characteristics of EBM-built Alloy 718[J]. Additive Manufacturing, 2019, 28:727-737. [81] PERSENOT T, BURR A, PLANCHER E, et al. Eff-ect of ultrasonic shot peening on the surface defects of thin struts built by electron beam melting:consequences on fatigue resistance[J]. Additive Manufacturing, 2019, 28:821-830. [82] CONRAD H, WHITE J, CAO W D, et al. Effect of electric current pulses on fatigue characteristics of polycrystalline copper[J]. Materials Science and Engineering:A, 1991, 145(1):0921509391902904. [83] LAI Z H, MA C X, CONRAD H. Cyclic softening by high density electric current pulses during low cycle fatigue of α-Ti[J]. Scripta Metallurgica et Materialia, 1992, 27(5):527-531. [84] 高海根.脉冲电流对热作模具钢热疲劳行为的影响[D].长春:吉林大学, 2007. [85] 晁月盛,滕功清,谢春辉,等.高密度脉冲电流对Fe-Si-B非晶合金晶化过程的影响[J].金属学报, 1996, 32(11):1204-1208. [86] MIZUBAYASHI H, OKUDA S. Structural relaxation induced by passing electric current in amorphous Cu50Ti50 at low temperatures[J]. Physical Review B, 1989, 40(11):8057-8060. [87] ZHOU Y Z, ZENG Y, HE G H, et al. The healing of quenched crack in 1045 steel under electropulsing[J]. Journal of Materials Research, 2001, 16(1):17-19. [88] SONG H, WANG Z J. Microcrack healing and local recrystallization in pre-deformed sheet by high density electropulsing[J]. Materials Science and Engineering:A, 2008, 490(1-2):1-6. [89] LEVITIN V V, LOSKUTOV S V. The effect of a current pulse on the fatigue of titanium alloy[J]. Solid State Communications, 2004, 131(3-4):181-183. [90] 沈以赴,周本镰,何冠虎,等.材料疲劳恢复新途径的探索I--低碳钢疲劳寿命的延长[J].材料研究学报, 1996, 10(2):165-168. [91] 白象忠,付宇明,高殿全,等.低合金模具钢脉冲放电止裂的宏微观分析[J].模具工业, 2001, 27(8):43-46. [92] CAI G X, YUAN F G. Electric current-induced stresses at the crack tip in conductors[J]. International Journal of Fracture, 1999, 96(3):279-301. [93] 汪青杰,高明,陈皓.导电薄板内裂纹尖端区域的电磁应力[J].材料科学与工艺, 2005, 13(2):175-177. [94] 邓德伟,刘倩倩,牛婷婷,等.脉冲电流对奥氏体不锈钢止裂效果的影响[J].热加工工艺, 2015, 44(16):49-52. [95] ZHOU Y Z, QIN R S, XIAO S H, et al. Reversing effect of electropulsing on damage of 1045 steel[J]. Journal of Materials Research, 2000, 15(5):1056-1061. [96] LIN H Q, ZHAO Y G, GAO Z M, et al. Effects of pulse current stimulation on the thermal fatigue crack propagation behavior of CHWD steel[J]. Materials Science and Engineering:A, 2008, 478(1-2):93-100. [97] 肖素红.高密度脉冲电流处理对疲劳铜单晶位错结构的影响及其机制[D].沈阳:中国科学院金属研究所, 2002. [98] XIAO S H, GUO J D, WU S D, et al. Recrystallization in fatigued copper single crystals under electropulsing[J]. Scripta Materialia, 2002, 46(1):1-6. [99] 沈以赴,郭晓楠,姚戈,等.材料疲劳恢复新途径的探索II--脉冲电流对Ti-6Al-4V合金裂纹扩展的阻滞[J].材料研究学报, 1999, 13(4):381-384. [100] PAN D, ZHAO Y G, XU X F, et al. A novel strengthening and toughening strategy for T250 maraging steel:cluster-orientation governed higher strength-ductility combination induced by electropulsing[J]. Materials&Design, 2019, 169:107686. [101] ZHENG X G, SHI Y N, LU K. Electro-healing cracks in nickel[J]. Materials Science and Engineering:A, 2013, 561:52-59. [102] REN X W, WANG Z J, FANG X, et al. The plastic flow model in the healing process of internal microcracks in pre-deformed TC4 sheet by pulse current[J]. Materials&Design, 2020, 188:108428. [103] ZHAO S T, ZHANG R P, CHONG Y, et al. Defect reconfiguration in a Ti-Al alloy via electroplasticity[J]. Nature Materials, 2021, 20:468-472. [104] KUMAR A, PAUL S K. Healing of fatigue crack in steel with the application of pulsed electric current[J]. Materialia, 2020, 14:100906. [105] WARYOBA D, ISLAM Z, WANG B M, et al. Low temperature annealing of metals with electrical wind force effects[J]. Journal of Materials Science&Technology, 2019, 35(4):465-472. [106] KUKUDZHANOV K V, LEVITIN A L. Phase transformations in metals stimulated by a pulsed high-energy electromagnetic field[J]. Procedia IUTAM, 2017, 23:84-100. [107] WANG X B, HE X F, WANG T S, et al. Internal pores in DED Ti-6.5Al-2Zr-Mo-V alloy and their influence on crack initiation and fatigue life in the mid-life regime[J]. Additive Manufacturing, 2019, 28:373-393. [108] 宋辉,王忠金. Ti及TiAl合金的电致增塑性[J].材料科学与工艺, 2013, 21(5):117-124.
点击查看大图
计量
- 文章访问数: 46
- HTML全文浏览量: 3
- PDF下载量: 12
- 被引次数: 0