留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超音速微粒轰击诱导表面纳米化对TC11钛合金组织和力学性能的影响

武永丽 王迎辉 熊毅 张鑫 杨苗苗

武永丽, 王迎辉, 熊毅, 张鑫, 杨苗苗. 超音速微粒轰击诱导表面纳米化对TC11钛合金组织和力学性能的影响[J]. 材料开发与应用, 2022, 37(6): 63-70.
引用本文: 武永丽, 王迎辉, 熊毅, 张鑫, 杨苗苗. 超音速微粒轰击诱导表面纳米化对TC11钛合金组织和力学性能的影响[J]. 材料开发与应用, 2022, 37(6): 63-70.
WU Yongli, WANG Yinghui, XIONG Yi, ZHANG Xin, YANG Miaomiao. Effect of Supersonic Fine Particle Bombardment Induced Surface Nanocrystallization on the Microstructure and Mechanical Properties of TC11 Alloy[J]. Development and Application of Materials, 2022, 37(6): 63-70.
Citation: WU Yongli, WANG Yinghui, XIONG Yi, ZHANG Xin, YANG Miaomiao. Effect of Supersonic Fine Particle Bombardment Induced Surface Nanocrystallization on the Microstructure and Mechanical Properties of TC11 Alloy[J]. Development and Application of Materials, 2022, 37(6): 63-70.

超音速微粒轰击诱导表面纳米化对TC11钛合金组织和力学性能的影响

基金项目: 

国家自然科学基金项目(Nos.U1804146、52111530068)

河南省外专引智计划项目(HNGD2020009)

详细信息
    作者简介:

    武永丽,女,1996年生,硕士研究生,研究方向为钛合金表面改性。E-mail:w18839727903@163.com

  • 中图分类号: TG146

Effect of Supersonic Fine Particle Bombardment Induced Surface Nanocrystallization on the Microstructure and Mechanical Properties of TC11 Alloy

  • 摘要: 采用超音速微粒轰击(SFPB)表面纳米化技术,在TC11钛合金表层构筑了一定层深的梯度纳米结构,研究了SFPB气体压力对TC11钛合金微观组织和力学性能的影响。结果表明,在低气体压力(0.5 MPa)下,形成了25 μm厚的严重塑性变形层,表层晶粒细化至纳米量级(17.7 nm)。随着气体压力的增大,表层纳米晶尺寸降低,严重塑性变形(SPD)层增大,在高气体压力(1.5 MPa)下,表层纳米晶尺寸和严重塑性变形层深度分别为9.4 nm和51 μm。随着SFPB气体压力的增大,表层显微硬度及硬化层深度逐渐增加,屈服强度、抗拉强度显著增加,而伸长率变化不大,断口形貌从典型的韧性断裂向韧-脆性混合断裂转变。

     

  • [1] ZHANG C W, FU T L, CHEN H Y, et al. Microstructure evolution of surface gradient nanocrystalline by shot peening of TA17 titanium alloy[J]. Metallurgical and Materials Transactions A, 2021, 52(5):1790-1798.
    [2] LIU Y G, LI H M, LI M Q. Roles for shot dimen-sion, air pressure and duration in the fabrication of nanocrystalline surface layer in TC17 alloy via high energy shot peening[J]. Journal of Manufacturing Processes, 2020, 56:562-570.
    [3] DAI S J, ZHU Y T, HUANG Z W. Microstructure evolution and strengthening mechanisms of pure titanium with nano-structured surface obtained by high energy shot peening[J]. Vacuum, 2016, 125:215-221.
    [4] 徐圣航, 沈凯杰, 张惠斌, 等. 钛及钛合金表面自纳米化行为研究进展[J]. 中国有色金属学报, 2021, 31(11):3141-3160.
    [5] 熊天英, 刘志文, 李智超, 等. 超音速微粒轰击金属表面纳米化新技术[J]. 材料导报, 2003, 17(3):69-71.
    [6] ZHOU T, XIONG Y, CHEN Z G, et al. Effect of surface nano-crystallization induced by supersonic fine particles bombarding on microstructure and mechanical properties of 300M steel[J]. Surface and Coatings Technology, 2021, 421:127381.
    [7] LIU K J, CUI X F, DONG M L, et al. Mechanism of diffusion promotion of carbon atoms during carburization of 20Cr2Ni4A alloy steel after lanthana-bearing supersonic fine particle bombarding pretreatment[J]. Surface and Coatings Technology, 2021, 425:127702.
    [8] GAO H M, CHEN W G, ZHANG Z J. Evolution mechanism of surface nano-crystallization of tungste-ncopper alloys[J]. Materials Letters, 2016, 176:181-184.
    [9] ZHANG Y X, YANG J H, GE L L, et al. Research on mechanism of surface nanocrystalline layer in 2219 Al alloy induced by supersonic fine particles bombarding[J]. International Journal of Engineering Resear-ch in Africa, 2016, 24:1-8.
    [10] ZHANG B S, DONG Q S, BA Z X, et al. Tribologic-al properties of surface-textured and plasma-nitrided pure titanium under oil lubrication condition[J]. Journal of Materials Engineering and Performance, 2018, 27(1):186-193.
    [11] 葛利玲, 袁战伟, 井晓天, 等. 纯钛(TA2)表面纳米化及其热稳定性研究[J]. 稀有金属材料与工程, 2011, 40(7):1239-1242.
    [12] GE L L, YUAN Z W, HAN Z H. Creep behavior of commercially pure titanium TA2 after supersonic fine particles bombardment[J]. Journal of Materials Engineering and Performance, 2019, 28(2):1141-1150.
    [13] 赵坤, 王敏, 蔺成效, 等. TC17钛合金自表面纳米化机制及组织演化[J]. 稀有金属材料与工程, 2013, 42(10):2048-2052.
    [14] 拓川, 王敏, 赵坤, 等. TC17钛合金表面自纳米化及拉伸试样断口形貌[J]. 塑性工程学报, 2013, 20(3):111-115.
    [15] ZHANG C H, HU K, ZHENG M, et al. Effect of surface nanocrystallization on fatigue properties of Ti-6Al-4V alloys with bimodal and lamellar structure[J]. Materials Science and Engineering:A, 2021, 813:141142.
    [16] WU Y L, XIONG Y, LIU W, et al. Effect of supersonic fine particle bombardment on microstructure and fatigue properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy at different temperatures[J]. Surface and Coatings Technology, 2021, 421:127473.
    [17] 孙汝剑, 李刘合, 朱颖, 等. 激光冲击强化对TC17钛合金微观组织及拉伸性能的影响[J]. 稀有金属材料与工程, 2019, 48(2):491-499.
    [18] 高玉魁, 陶雪菲. 高速冲击表面处理对金属材料力学性能和组织结构的影响[J]. 爆炸与冲击, 2021, 41(4):4-29.
    [19] YANG C, LIU Y G, LI M Q. Characteristics and formation mechanisms of defects in surface layer of TC17 subjected to high energy shot peening[J]. Applied Surface Science, 2020, 509:144711.
    [20] 张银霞, 杨鑫, 原少帅, 等. 喷丸工艺对DC53钢表面完整性的影响试验研究[J]. 郑州大学学报(工学版), 2021, 42(3):76-80.
    [21] 罗高丽, 张凌峰, 熊毅, 等. 激光冲击强化对Ti-6Al-3Nb-2Zr-1Mo钛合金组织与性能的影响[J]. 中国激光, 2022, 49(8):215-226.
    [22] 陈正阁, 武永丽, 薛全喜, 等. 激光冲击强化对片层TC11钛合金组织和性能的影响[J]. 表面技术, 2022, 51(7):343-352.
    [23] ZHANG H P, CAI Z Y, WAN Z D, et al. Microstructure and mechanical properties of laser shock peened 38CrSi steel[J]. Materials Science and Engineering:A, 2020, 788:139486.
  • 加载中
计量
  • 文章访问数:  51
  • HTML全文浏览量:  14
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-22
  • 网络出版日期:  2023-01-12

目录

    /

    返回文章
    返回