留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiO2粒径对Ni-Co-SiO2复合镀层性能的影响

白双锋 刘雪辉 许立坤 玄俊极 邵阳 辛永磊 李相波 范林

白双锋, 刘雪辉, 许立坤, 玄俊极, 邵阳, 辛永磊, 李相波, 范林. SiO2粒径对Ni-Co-SiO2复合镀层性能的影响[J]. 材料开发与应用, 2021, 36(6): 12-20.
引用本文: 白双锋, 刘雪辉, 许立坤, 玄俊极, 邵阳, 辛永磊, 李相波, 范林. SiO2粒径对Ni-Co-SiO2复合镀层性能的影响[J]. 材料开发与应用, 2021, 36(6): 12-20.
BAI Shuangfeng, LIU Xuehui, XU Likun, XUAN Junji, SHAO Yang, XIN Yonglei, LI Xiangbo, FAN Lin. Effect of SiO2Particle Size on Properties of Ni-Co-SiO2 Electrodeposited Composite Coatings[J]. Development and Application of Materials, 2021, 36(6): 12-20.
Citation: BAI Shuangfeng, LIU Xuehui, XU Likun, XUAN Junji, SHAO Yang, XIN Yonglei, LI Xiangbo, FAN Lin. Effect of SiO2Particle Size on Properties of Ni-Co-SiO2 Electrodeposited Composite Coatings[J]. Development and Application of Materials, 2021, 36(6): 12-20.

SiO2粒径对Ni-Co-SiO2复合镀层性能的影响

详细信息
    作者简介:

    白双锋,男,1995年生,研究方向为腐蚀防护。E-Mail:shuangfengbai@mail.nwpu.edu.cn

  • 中图分类号: TG178

Effect of SiO2Particle Size on Properties of Ni-Co-SiO2 Electrodeposited Composite Coatings

  • 摘要: 长期暴露在海洋环境中的钢质紧固件的腐蚀问题严重影响了海洋工程装备和设施的服役安全性。电镀合金镀层是紧固件常用的防护方法,其中,镍钴合金镀层具有较好的耐蚀性。通过向Ni-Co镀液中添加不同粒径的SiO2颗粒,利用电沉积技术在45钢基体上制备Ni-Co-SiO2复合镀层。之后,分析了SiO2粒径对复合镀层表面形貌和显微结构的影响,评价了复合镀层在3.5%(w)的NaCl溶液中的耐蚀性能,并对复合镀层的显微硬度和摩擦系数进行了测试。结果表明,随着镀液中SiO2粒径的增大,复合镀层表面的SiO2分布均匀性先增大后减小,当SiO2粒径为70 nm时,镀层表面形成较完整的SiO2膜层。动电位极化和电化学阻抗谱测试表明,掺杂70 nm的SiO2的复合镀层具有最好的耐蚀性。随着镀液中SiO2粒径增大,复合镀层的硬度逐渐降低,但其对摩擦系数的影响较小。

     

  • [1] CAI F, CAI X J, ZHANG S H, et al. Microstructure evolution and improved corrosion resistance of electrodeposited NiCo-Al composite coatings with different Al contents[J]. Journal of Alloys and Compounds, 2018, 738:72-78.
    [2] 李亚涛, 沈岳军. 镀液基础配方对化学镀Ni-P-纳米SiO2的影响[J]. 广东化工, 2019, 46(8):80-82.
    [3] SOCHA R P, NOWAK P, LAAJALEHTO K, et al. Particle-electrode surface interaction during nickel electrodeposition from suspensions containing SiC and SiO2 particles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2004, 235(1-3):45-55.
    [4] SKLENIČKA V, KUCHAŘOVÁ K, PAHUTOVÁ M, et al. Creep in electrodeposited submicrocrystalline nickel and its particle-reinforced nanocomposite[J]. Materials Science and Engineering:A, 2007, 462(1-2):269-274.
    [5] 刘军松, 吴汯翰, 刘定富, 等. 纳米SiO2对Zn-Ni/纳米SiO2复合镀层性能的影响[J]. 电镀与环保, 2019, 39(1):27-30.
    [6] MIYAMOTO H, UEDA K, UENOYA T. Mechanical properties of electrodeposited Ni-SiO2 nanocomposite[J]. Materials Science Forum, 2010, 654-656:1162-1165.
    [7] BAHADORMANESH B, DOLATI A, AHMADI M R. Electrodeposition and characterization of Ni-Co/SiC nanocomposite coatings[J]. Journal of Alloys and Compounds, 2011, 509(39):9406-9412.
    [8] TIAN B R, CHENG Y F. Electrolytic deposition of Ni-Co-Al2O3 composite coating on pipe steel for corrosion/erosion resistance in oil sand slurry[J]. Electrochimica Acta, 2007, 53(2):511-517.
    [9] GHAZANLOU S I, AHMADIYEH S, YAVARI R. Investigation of pulse electrodeposited Ni-Co/SiO2 nanocomposite coating[J]. Surface Engineering, 2017, 33(5):337-347.
    [10] BAKHIT B. The influence of electrolyte composition on the properties of Ni-Co alloy coatings reinforced by SiC nano-particles[J]. Surface and Coatings Technology, 2015, 275:324-331.
    [11] YANG Y, CHENG Y F. Mechanistic aspects of electrodeposition of Ni-Co-SiC composite nano-coating on carbon steel[J]. Electrochimica Acta, 2013, 109:638-644.
    [12] ALIZADEH M, MIRAK M, SALAHINEJAD E, et al. Structural characterization of electro-codeposited Ni-Al2O3-SiC nanocomposite coatings[J]. Journal of Alloys and Compounds, 2014, 611:161-166.
    [13] CALDERÓN J A, HENAO J E, GÓMEZ M A. Erosion-corrosion resistance of Ni composite coatings with embedded SiC nanoparticles[J]. Electrochimica Acta, 2014, 124:190-198.
    [14] YANG Y, CHENG Y F. Fabrication of Ni-Co-SiC composite coatings by pulse electrodeposition-Effects of duty cycle and pulse frequency[J]. Surface and Coatings Technology, 2013, 216:282-288.
    [15] DAS S, BANTHIA S, PATRA A, et al. Novel bilayer ZnNi/NiCoSiC nanocomposite coating with exceptional corrosion and wear properties by pulse electrodeposition[J]. Journal of Alloys and Compounds, 2018, 738:394-404.
    [16] TUDELA I, ZHANG Y, PAL M, et al. Ultrasound-assisted electrodeposition of thin nickel-based composite coatings with lubricant particles[J]. Surface and Coatings Technology, 2015, 276:89-105.
    [17] VNAL E, KARAHANi H. Effects of ultrasonic agitation prior to deposition and additives in the bath on electrodeposited Ni-B/hBN composite coatings[J]. Journal of Alloys and Compounds, 2018, 763:329-341.
    [18] AABOUBI O, MSELLAK K. Magnetic field effects on the electrodeposition of CoNiMo alloys[J]. Applied Surface Science, 2017, 396:375-383.
    [19] BAKHIT B, AKBARI A. Synthesis and characterization of Ni-Co/SiC nanocomposite coatings using sediment co-deposition technique[J]. Journal of Alloys and Compounds, 2013, 560:92-104.
    [20] 刘香琳, 王一雍, 金辉, 等. 超声波辅助电沉积Ni-Co-Y2O3复合镀层的电化学研究[J]. 电镀与环保, 2019, 39(6):13-16.
    [21] SAFAVI M S, TANHAEI M, AHMADIPOUR M F, et al. Electrodeposited Ni-Co alloy-particle composite coatings:a comprehensive review[J]. Surface and Coatings Technology, 2020, 382:125153.
    [22] HASSANI S, RAEISSI K, AZZI M, et al. Improving the corrosion and tribocorrosion resistance of Ni-Co nanocrystalline coatings in NaOH solution[J]. Corrosion Science, 2009, 51(10):2371-2379.
    [23] 孔磊, 胡会利, 于元春, 等. 影响复合电镀层中微粒复合量的因素[J]. 电镀与涂饰, 2011, 30(10):9-12.
    [24] SAFAVI M S, RASOOLI A. Ni-P-TiO2 nanocomposite coatings with uniformly dispersed Ni3Ti intermetallics:Effects of current density and post heat treatment[J]. Surface and Coatings Technology, 2019, 372:252-259.
    [25] LI B S, ZHANG W W. Synthesis of Ni-Co-ZrO2 nanocomposites doped with ceria particles via electrodeposition as highly protective coating[J]. Journal of Alloys and Compounds, 2020, 820:153158.
    [26] 朱荻, 张文峰, 雷卫宁. 基于电沉积技术的纳米晶材料晶粒细化工艺研究[J]. 人工晶体学报, 2004, 33(5):765-769.
    [27] LELEVIC A, WALSH F C. Electrodeposition of NiP alloy coatings:a review[J]. Surface and Coatings Technology, 2019, 369:198-220.
    [28] 冯筱珺. 电沉积制备镍基复合镀层的研究[D]. 沈阳:沈阳大学, 2018.
    [29] LIU X H, ZHANG D W, HOU P M, et al. Preparation and characterization of polyelectrolyte-modified attapulgite as nanocontainers for protection of carbon steel[J]. Journal of the Electrochemical Society, 2018, 165(13):C907-C915.
    [30] QIAN H C, XU D K, DU C W, et al. Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties[J]. Journal of Materials Chemistry A, 2017, 5(5):2355-2364.
    [31] WANG M D, LIU M Y, FU J J. An intelligent anticorrosion coating based on pH-responsive smart nanocontainers fabricated via a facile method for protection of carbon steel[J]. Journal of Materials Chemistry A, 2015, 3(12):6423-6431.
    [32] LIU Y H, JIN X H, HU J M. Electrodeposited silica films post-treated with organosilane coupling agent as the pretreatment layers of organic coating system[J]. Corrosion Science, 2016, 106:127-136.
    [33] 吴俊升, 李晓刚, 孔明, 等. SiC颗粒尺寸对镍基复合镀层耐磨性和耐蚀性的影响[J]. 中国有色金属学报, 2010, 20(1):125-131.
    [34] RAGHAVENDRA C R, BASAVARAJAPPA S, SOGALAD I, et al. A review on Ni based nano composite coatings[J]. Materials Today:Proceedings, 2021, 39:6-16.
    [35] BAKHIT B, AKBARI A. Effect of particle size and co-deposition technique on hardness and corrosion properties of Ni-Co/SiC composite coatings[J]. Surface and Coatings Technology, 2012, 206(23):4964-4975.
    [36] 郜聆羽, 王洪亮, 黄英. 微纳米材料对镀层硬度耐磨性的影响[J]. 橡塑技术与装备, 2016, 42(12):74-75.
  • 加载中
计量
  • 文章访问数:  142
  • HTML全文浏览量:  9
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-23
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回