留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

船舶工程焊接接头完整性评估与疲劳寿命预测技术综述

刘雪松 郭少飞

刘雪松, 郭少飞. 船舶工程焊接接头完整性评估与疲劳寿命预测技术综述[J]. 材料开发与应用, 2023, 38(5): 75-85.
引用本文: 刘雪松, 郭少飞. 船舶工程焊接接头完整性评估与疲劳寿命预测技术综述[J]. 材料开发与应用, 2023, 38(5): 75-85.
LIU Xuesong, GUO Shaofei. A Review on Integrity Evaluation and Fatigue Life Prediction Technology of Welded Joint in Ship Engineering[J]. Development and Application of Materials, 2023, 38(5): 75-85.
Citation: LIU Xuesong, GUO Shaofei. A Review on Integrity Evaluation and Fatigue Life Prediction Technology of Welded Joint in Ship Engineering[J]. Development and Application of Materials, 2023, 38(5): 75-85.

船舶工程焊接接头完整性评估与疲劳寿命预测技术综述

详细信息
    作者简介:

    刘雪松,男,1968年生,博士,教授,主要从事焊接力学及结构可靠性研究。E-mail:liuxuesong@hit.edu.cn

  • 中图分类号: TG407

A Review on Integrity Evaluation and Fatigue Life Prediction Technology of Welded Joint in Ship Engineering

  • 摘要: 介绍了船体结构中含缺陷的焊接接头完整性评估以及疲劳寿命预测方法,对结构完整性评估的K准则、COD准则、J积分准则、SINTAP/FITNET安全性评定方法以及评定流程、国内外标准进行介绍。并对焊接接头的疲劳强度影响因素,如平均应力、残余应力以及接头几何形状应力集中等进行了分析;介绍了焊接接头疲劳寿命预测的常用方法,如基于名义应力的评估方法、基于断裂力学的评估方法、基于损伤力学的评估方法以及其它疲劳评估方法等。此外,还对基于断裂力学法建立的焊接残余应力与疲劳裂纹扩展寿命之间的函数关系进行了介绍,该方法实现了对含残余应力的焊接结构疲劳寿命的精确预测。

     

  • [1] STAVOVY A B. Ultimate Longitudinal strength[J]. Marine Technology Society Journal, 1970(7).
    [2] PAIK J K. Principles and criteria for ultimate limit state design and strength assessment of ship hulls[J]. The International Journal of Maritime Engineering, 2004, 146(a3): 10.
    [3] 熊晓枫. 薄壁结构非线性有限元数值计算及其稳定性分析研究[D]. 西安: 西北工业大学, 2006.
    [4] 杜庆喜. 船体结构强度直接计算方法研究[D]. 武汉: 武汉理工大学, 2007.
    [5] 田文静. 薄膜型LNG船的总纵极限承载能力研究[D]. 武汉: 华中科技大学, 2008.
    [6] 彭大炜. 舰船新型甲板结构型式的极限强度研究[D]. 上海: 上海交通大学, 2010.
    [7] 何福志, 马建军, 万正权. 船体结构总纵极限强度的简化逐步破坏分析方法[J]. 中国造船, 2005, 46(2): 17-27.
    [8] SMITH C S. Influence of local compressive failure on ultimate longitudinal strength of a ship’s hull[J]. PRADS, 1977, 77:73-79.
    [9] Cramer E H, Robert L, Olaisen K. Fatigue asses-sment of ship structure[J]. Marine Structures, 1995, 8(4): 359-383.
    [10] US-ABS. Rules for building and classing steel vessels[S]. Houston: American Bureau of Shipping, 2002.
    [11] 中国船级社. 船体结构疲劳强度指南[S]. 北京:人民交通出版社, 2001.
    [12] 邓彩艳. 海底油气管道断裂性能及安全评定研究[D]. 天津: 天津大学, 2003: 4-7.
    [13] MILNE I, AINSWORTH R A, DOWLING A R, et al. Assessment of the integrity of structures containing defects[J]. International Journal of Pressure Vessels and Piping, 1988, 32(1-4): 3-104.
    [14] AINSWORTH R A, BANNISTER A C, ZERBST U. An overview of the European flaw assessment procedure SINTAP and its validation[J]. Intern-ational Journal of Pressure Vessels and Piping, 2000, 77(14-15): 869-876.
    [15] WEBSTER S, BANNISTER A. Structural integrity assessment procedure for Europe of the SINTAP programme overview[J]. Engineering Fracture Mechan-ics, 2000, 67(6): 481-514.
    [16] LIE S T, YANG Z M, GHO W M. Validation of BS7910: 2005 failure assessment diagrams for cracked square hollow section T-, Y- and K-joints[J]. International Journal of Pressure Vessels and Piping, 2009, 86(5): 335-344.
    [17] 马敬东, 李亚宁. 国际缺陷评定方法研究进展[J]. 材料导报, 2006, 20(4): 86-89.
    [18] BUDDEN P J, SHARPLES J K, DOWLING A R. The R6 procedure: recent developments and comparison with alternative approaches[J]. International Journal of Pressure Vessels and Piping, 2000, 77(14-15): 895-903.
    [19] Hobbacher A F. Fatigue design of welded joints and components (Second Edition)[S]. IIW document IIW-2259-15, 2016.
    [20] BAUMGARTNER J. Enhancement of the fatigue st-rength assessment of welded components by consideration of mean and residual stresses in the crack initiation and propagation phases[J]. Welding in the World, 2016, 60(3): 547-558.
    [21] VÖHRINGER O. Relaxation of residual stresses by annealing or mechanical treatment[M]//MORDFIN L., Ed. Residual Stresses. Amsterdam: Elsevier, 1987: 367-396.
    [22] HENSEL J, NITSCHKE-PAGEL T, DILGER K. Effects of residual stresses and compressive mean stresses on the fatigue strength of longitudinal fillet-welded gussets[J]. Welding in the World, 2016, 60(2): 267-281.
    [23] 赵智力. 基于等承载能力原则的高强钢低匹配焊接接头设计[D]. 哈尔滨: 哈尔滨工业大学, 2009: 24-62.
    [24] 王涛. 基于断裂参量K因子的焊接接头等承载设计[D]. 哈尔滨: 哈尔滨工业大学, 2012: 19-30.
    [25] 王佳杰. 低匹配焊接接头弯曲等承载设计及随焊整形[D]. 哈尔滨: 哈尔滨工业大学, 2015: 24-50.
    [26] NYKÄNEN T, MARQUIS G, BJÖRK T. A simplified fatigue assessment method for high quality welded cruciform joints[J]. International Journal of Fatigue, 2009, 31(1): 79-87.
    [27] SAIPRASERTKIT K, HANJI T, MIKI C. Fatigue strength assessment of load-carrying cruciform joints with material mismatching in low-and high-cycle fatigue regions based on the effective Notch concept[J]. International Journal of Fatigue, 2012, 40: 120-128.
    [28] British Standards Institution. Guide to fatigue design and assessment of steel products[S].BSI Standards Publication, 2014.
    [29] Recommended practice DNV-RP-C203: fatigue design of offshore steel structures[S]. Det Norske Veritas, 2013.
    [30] Eurocode 3-Design of steel structures-Part 1-12: A-dditional rules for the extension of EN 1993 up to steel grades S 700: DS/EN 1993-1-12: 2007[S]. Danish Standards, 2007.
    [31] The American Society of Mechanical Engineers. De-sign and fabrication of pressure vessels[M], Boiler and Pressure Vessel Code Section. 2012.
    [32] JSSC. Fatigue design recommendations for steel structures[S].Tokyo: Japanese Society of Steel Construction, 1995.
    [33] GOYAL R, BOGDANOV S, EL-ZEIN M, et al. Fracture mechanics based estimation of fatigue lives of laser welded joints[J]. Engineering Failure Analysis, 2018, 93: 340-355.
    [34] CITARELLA R, CARLONE P, LEPORE M, et al. Numerical-experimental crack growth analysis in AA2024-T3 FSWed butt joints[J]. Advances in Engineering Software, 2015, 80: 47-57.
    [35] PATEL V K, BHOLE S D, CHEN D L. Fatigue life estimation of ultrasonic spot welded Mg alloy joints[J]. Materials & Design (1980-2015), 2014, 62: 124-132.
    [36] SPRINGER M, PETTERMANN H E. Fatigue life predictions of metal structures based on a low-cycle, multiaxial fatigue damage model[J]. International Journal of Fatigue, 2018, 116: 355-365.
    [37] HORMOZI R, BIGLARI F, NIKBIN K. Taguchi sensitivity analysis of damage parameters for predicting the damage Mechanism of 9Cr steel under low-cycle fatigue test[J]. Fatigue & Fracture of Engineering Materials & Structures, 2014, 37(11): 1211-1222.
    [38] FENG L Y, QIAN X D. Low cycle fatigue test and enhanced lifetime estimation of high-strength steel S550 under different strain ratios[J]. Marine Structures, 2018, 61: 343-360.
    [39] HU P, MENG Q C, HU W P, et al. A continuum damage mechanics approach coupled with an improved pit evolution model for the corrosion fatigue of aluminum alloy[J]. Corrosion Science, 2016, 113: 78-90.
    [40] JIE Z Y, LI Y D, WEI X, et al. Fatigue life prediction of welded joints with artificial corrosion pits based on continuum damage mechanics[J]. Journal of Constructional Steel Research, 2018, 148: 542-550.
    [41] VAN DO V N, LEE C H, CHANG K H. High cycle fatigue analysis in presence of residual stresses by using a continuum damage mechanics model[J]. International Journal of Fatigue, 2015, 70: 51-62.
    [42] SUSMEL L, TAYLOR D. A critical distance/plane method to estimate finite life of notched components under variable amplitude uniaxial/multiaxial fatigue loading[J]. International Journal of Fatigue, 2012, 38: 7-24.
    [43] SUSMEL L, TAYLOR D. The Theory of Critical Distances to estimate lifetime of notched components subjected to variable amplitude uniaxial fatigue loading[J]. International Journal of Fatigue, 2011, 33(7): 900-911.
    [44] AL ZAMZAMI I, SUSMEL L. On the use of hot-spot stresses, effective Notch stresses and the Point Method to estimate lifetime of inclined welds subjected to uniaxial fatigue loading[J]. International Journal of Fatigue, 2018, 117: 432-449.
    [45] AL ZAMZAMI I, DAVISON B, SUSMEL L. Nominal and local stress quantities to design aluminium-to-steel thin welded joints against fatigue[J]. International Journal of Fatigue, 2019, 123: 279-295.
    [46] BERTO F. Fatigue and fracture assessment of notched components by means of the Strain Energy Density[J]. Engineering Fracture Mechanics, 2016, 167: 176-187.
    [47] MENEGHETTI G, CAMPAGNOLO A, BERTO F, et al. Notched Ti-6Al-4V titanium bars under multiaxial fatigue: synthesis of crack initiation life based on the averaged strain energy density[J]. Theoretical and Applied Fracture Mechanics, 2018, 96: 509-533.
    [48] MENEGHETTI G, CAMPAGNOLO A, BABINI V, et al. Multiaxial fatigue assessment of welded steel details according to the peak stress method: industrial case studies[J]. International Journal of Fatigue, 2019, 125: 362-380.
    [49] MENEGHETTI G, DE MARCHI A, CAMPAGNOLO A. Assessment of root failures in tube-to-flange steel welded joints under torsional loading according to the Peak Stress Method[J]. Theoretical and Applied Fracture Mechanics, 2016, 83: 19-30.
    [50] CAMPAGNOLO A, MENEGHETTI G, BERTO F, et al. Crack initiation life in notched steel bars under torsional fatigue: synthesis based on the averaged strain energy density approach[J]. International Journal of Fatigue, 2017, 100: 563-574.
    [51] GLINKA G. Effect of residual stresses on fatigue crack growth in steel weldments under constant and variable amplitude loads[M]//Fracture Mechanics. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2009: 198.
    [52] ELBER W. The significance of fatigue crack closure[M]//NEWMAN J C, ELBER W., Eds. Damage Tolerance in Aircraft Structures. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2009: 230.
    [53] KANG M K, ZHANG M X, ZHU M. In situ observation of bainite growth during isothermal holding[J]. Acta Materialia, 2006, 54(8): 2121-2129.
    [54] MA Y E, STARON P, FISCHER T, et al. Size ef-fects on residual stress and fatigue crack growth in friction stir welded 2195-T8 aluminium - Part I: Experiments[J]. International Journal of Fatigue, 2011, 33(11): 1417-1425.
    [55] LILJEDAHL C D M, ZANELLATO O, FITZPATR-ICK M E, et al. The effect of weld residual stresses and their re-distribution with crack growth during fatigue under constant amplitude loading[J]. International Journal of Fatigue, 2010, 32(4): 735-743.
    [56] LILJEDAHL C D M, BROUARD J, ZANELLATO O, et al. Weld residual stress effects on fatigue crack growth behaviour of aluminium alloy 2024-T351[J]. International Journal of Fatigue, 2009, 31(6): 1081-1088.
    [57] RONEVICH J A, SONG E J, FENG Z L, et al. Fatigue crack growth rates in high pressure hydrogen gas for multiple X100 pipeline welds accounting for crack location and residual stress[J]. Engineering Fracture Mechanics, 2020, 228: 106846.
  • 加载中
计量
  • 文章访问数:  107
  • HTML全文浏览量:  13
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-25
  • 网络出版日期:  2023-11-07

目录

    /

    返回文章
    返回