留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干纤维自动铺放-液体成型技术进展研究

聂玉强 付晨辰 彭运松

聂玉强, 付晨辰, 彭运松. 干纤维自动铺放-液体成型技术进展研究[J]. 材料开发与应用, 2023, 38(4): 19-26.
引用本文: 聂玉强, 付晨辰, 彭运松. 干纤维自动铺放-液体成型技术进展研究[J]. 材料开发与应用, 2023, 38(4): 19-26.
NIE Yuqiang, FU Chenchen, PENG Yunsong. Research on Progress of Automatic Dry Fiber Laying-liquid Forming[J]. Development and Application of Materials, 2023, 38(4): 19-26.
Citation: NIE Yuqiang, FU Chenchen, PENG Yunsong. Research on Progress of Automatic Dry Fiber Laying-liquid Forming[J]. Development and Application of Materials, 2023, 38(4): 19-26.

干纤维自动铺放-液体成型技术进展研究

基金项目: 

国家重点研发计划(2022YFB4300104)

详细信息
    作者简介:

    聂玉强,男,1972年生,主要从事船舶材料的研究。E-mail:13621201199@139.com

  • 中图分类号: TB33

Research on Progress of Automatic Dry Fiber Laying-liquid Forming

  • 摘要: 相较于传统预浸料预制体需要热压罐固化,干纤维自动铺放结合液体成型技术可以实现非热压罐制造复合材料,从而降低制造成本、缩短制造周期。本研究针对干纤维自动铺放-液体成型技术,从干纤维铺放材料、干纤维自动铺放设备以及干纤维自动铺放工艺技术进展三个方面进行概述,并对其未来在船舶领域的应用进行展望。

     

  • [1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12.
    [2] KISHORE R A, TIWARI R, DVIVEDI A, et al. Ta-guchi analysis of the residual tensile strength after drilling in glass fiber reinforced epoxy composites[J]. Materials & Design, 2009, 30(6):2186-2190.
    [3] OROMIEHIE E, PRUSTY B G, COMPSTON P, et al.Automated fibre placement based composite structu-res:review on the defects, impacts and inspections techniques[J]. Composite Structures, 2019, 224:110987.
    [4] ZHANG L E, WANG X P, PEI J Y, et al. Review of automated fibre placement and its prospects for advanced composites[J]. Journal of Materials Science, 2020, 55(17):7121-7155.
    [5] KOZACZUK K. Automated fiber placement systems ov-erview[J]. Transactions of the Institute of Aviation, 2016, 245(4):52-59.
    [6] 李勇, 肖军. 复合材料纤维铺放技术及其应用[J]. 纤维复合材料, 2002, 19(3):39-41.
    [7] 王显峰, 段少华, 唐珊珊, 等. 复合材料自动铺放技术在航空航天领域的研究进展[J]. 航空制造技术, 2022, 65(16):64-77.
    [8] 熊文. 复合材料在海洋船舶中的应用研究[J]. 科技经济市场, 2021(10):24-25.
    [9] 牟音如, 牛德青, 李树敏. 纤维增强复合材料在船舶和海洋工程中的运用[J]. 船舶物资与市场, 2021, 29(7):65-66.
    [10] RUBINO F, NISTICÒ A, TUCCI F, et al. Marine application of fiber reinforced composites:a review[J]. Journal of Marine Science and Engineering, 2020, 8(1):26.
    [11] BOER K D. Automated Preform Fabrication by Dry Tow Placement[R]. Delft:Nationaal Lucht- en Ruimtevaartlaboratorium, 2013.
    [12] MALHAN R K, SHEMBEKAR A V, KABIR A M, et al. Automated planning for robotic layup of composite prepreg[J]. Robotics and Computer-Integrated Manufacturing, 2021, 67:102020.
    [13] AUGUST Z, OSTRANDER G, MICHASIOW J. Rec-ent developments in automated fiber placement of thermoplastic composites[J]. SAMPE Journal, 2014, 50(2):30-37.
    [14] CLANCY G J, PEETERS D, OLIVERI V, et al. St-eering of carbon fiber/thermoplastic pre-preg tapes using laser-assisted tape placement[C]//Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Kissimmee, Florida. Reston, Virginia:AIAA, 2018:AIAA2018-0478.
    [15] ASSADI M, FIELD T. AFP processing of dry fiber ca-rbon materials (DFP) for improved rates and reliability[J]. SAE International Journal of Advances and Current Practices in Mobility, 2020, 2(3):1196-1201.
    [16] MTORRES. Prototypes and preseries[EB/OL].[2023-5-10]. https://mtorres.es/en/composite-materials/prototypes-preseries.
    [17] HEXCEL. A new efficient composite technology for Pr-imary Aircraft Structures[EB/OL].[2023-5-10]. https://www.hexcel.com/Site/Products/Fabrics-Reinforcements/HiTape.aspx.
    [18] SLOAN J. Infused wing sheds light on aerocomposites future[EB/OL]. (2018-1-8)[2023-5-10]. https://www.compositesworld.com/articles/infused-wing-sheds-light-on-aerocomposites-future.
    [19] SOLVAY. 索尔维的领先OOA产品组合将亮相2017法国巴黎复合材料展[EB/OL].[2023-5-10]. https://www.solvay.com/sites/g/files/srpend221/files/tridion/documents/170315-Solvay-Displays-OOA-Portfolio-at-JEC-World-2017_CN.pdf.pdf.
    [20] 李晓涵, 李勇, 还大军, 等. 热塑性定型剂对干铺丝-RTM工艺及力学性能影响[J]. 航空动力学报, 2019, 34(4):864-874.
    [21] FIVES. MADRAS DRY FIBER NEXT GENERATION TECHNOLOGY[EB/OL].[2023-5-10]. https://www.fivesgroup.com/high-precision-machines/composites-automated-solutions/lamination/hybrid-atl-afp/forest-line-madras-dry-fiber.
    [22] KADIYALA A K, DEVLIN K, LEE S, et al. Evaluation of the flexural properties and failure evolution of a hybrid composite manufactured by automated dry fibre placement followed by liquid resin infusion[J]. Composites Part A:Applied Science and Manufacturing, 2022, 154:106764.
    [23] 耿奕, 宁博, 陈吉平, 等. 用于航空复合材料的自动铺丝干纤维层间粘结性能[J]. 复合材料学报, 2022, 39(9):4441-4458.
    [24] 段振锦, 潘利剑, 刘卫平, 等. 干纤维铺放真空辅助成型复合材料的性能[J]. 玻璃钢/复合材料, 2016(12):43-48.
    [25] DANOBAT. AUTOMATED WIND BLADE MANUF-ACTURING SYSTEM[EB/OL].[2023-5-10]. https://www.danobatcomposites.com/the-technology/.
    [26] SCHLEDJEWSKI R. Thermoplastic tape placement pr-ocess-in situconsolidation is reachable[J]. Plastics, Rubber and Composites, 2009, 38(9-10):379-386.
    [27] ORTH T. A review of radiative heating in automated layup and its modelling[J]. Zeitschrift Kunststofftechnik, 2017, 2:91-125.
    [28] DEDEN D, BRUCKNER F, BRANDT L, et al. Comparison of heat sources for automated dry fibre placement:xenon flashlamp vs. infrared heating[C]. the conference ICCM, Sinopore, July9-13, 2019.
    [29] HELBER F, AMANN A, CAROSELLA S, et al. Intrinsic fibre heating:a novel approach for automated dry fibre placement[J]. IOP Conference Series:Materials Science and Engineering, 2018, 406:012064.
    [30] SLOAN J. Electroimpact launches plug-and-play AFP system[EB/OL].[2023-5-10]. https://www.compositesworld.com/products/electroimpact-launches-plug-and-play-afp-system.
    [31] M-TORRES. Máquina automática de Fiberplacement-TORRESFIBERLAYUP[EB/OL].[2023-5-10]. https://mtorres.es/es/equipamientos/sistemas-de-fabricacion/laminacion/torresfiberlayup.
    [32] ECKARDT M, BUCHHEIM A, GERNGROSS T. Investigation of an automated dry fiber preforming process for an aircraft fuselage demonstrator using collaborating robots[J]. CEAS Aeronautical Journal, 2016, 7(3):429-440.
    [33] RUDBERG T, CEMENSKA J, SHERRARD E. A pr-ocess for delivering extreme AFP head reliability[J]. SAE International Journal of Advances and Current Practices in Mobility, 2019, 1(2):333-342.
    [34] ELECTROIMPACT. THE NEXT GAME-CHANGER IN AFP:SERVO CREEL HEADS[EB/OL].[2023-5-10]. https://www.wittenstein-us.com/expertise/applications/electroimpact/.
    [35] BELHAJ M, DELEGLISE M, COMAS-CARDONA S, et al. Dry fiber automated placement of carbon fibrous preforms[J]. Composites Part B:Engineering, 2013, 50:107-111.
    [36] GRISIN B, CAROSELLA S, MIDDENDORF P. Dry fibre placement:the influence of process parameters on mechanical laminate properties and infusion behaviour[J]. Polymers, 2021, 13(21):3853.
    [37] AZIZ A R, ALI M A, ZENG X, et al. Transverse permeability of dry fiber preforms manufactured by automated fiber placement[J]. Composites Science and Technology, 2017, 152:57-67.
    [38] RIMMEL O, MAY D, MITSCHANG P. Impact of sti-tching on permeability and mechanical properties of preforms manufactured by dry fiber placement[J]. Polymer Composites, 2019, 40(4):1631-1642.
    [39] 刘姝呈, 李林秀, 潘利剑, 等. 自动铺放工艺参数对干纤维预成型体工艺性能的影响[J]. 复合材料科学与工程, 2020(11):93-101.
    [40] MATVEEV M Y, BALL F G, JONES I A, et al. Uncertainty in geometry of fibre preforms manufactured with automated dry fibre placement and its effects on permeability[J]. Journal of Composite Materials, 2018, 52(16):2255-2269.
    [41] MATVEEV M Y, SCHUBEL P J, LONG A C, et al. Understanding the buckling behaviour of steered tows in automated dry fibre placement (ADFP)[J]. Composites Part A:Applied Science and Manufacturing, 2016, 90:451-456.
    [42] 黄炎, 张小辉, 孙朝海. 干纤维自动铺放参数对复合材料剪切性能的影响[J]. 沈阳工业大学学报, 2023, 45(2):168-172.
    [43] 司衍鹏, 孙立帅, 闫恩玮, 等. 考虑温度效应的干纤维预制体压缩蠕变模型[J]. 航空学报, 2024, 45(6):428513.
  • 加载中
计量
  • 文章访问数:  69
  • HTML全文浏览量:  3
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-18
  • 网络出版日期:  2023-09-13

目录

    /

    返回文章
    返回