留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光冲击强化对300M钢微观组织和力学性能的影响

马云飞 王迎辉 熊毅 栾泽伟 舒康豪 吕威

马云飞, 王迎辉, 熊毅, 栾泽伟, 舒康豪, 吕威. 激光冲击强化对300M钢微观组织和力学性能的影响[J]. 材料开发与应用, 2022, 37(6): 55-62.
引用本文: 马云飞, 王迎辉, 熊毅, 栾泽伟, 舒康豪, 吕威. 激光冲击强化对300M钢微观组织和力学性能的影响[J]. 材料开发与应用, 2022, 37(6): 55-62.
MA Yunfei, WANG Yinghui, XIONG Yi, LUAN Zewei, SHU Kanghao, LÜ Wei. Effect of Laser Shock Processing on Microstructure and Mechanical Properties of 300M Steel[J]. Development and Application of Materials, 2022, 37(6): 55-62.
Citation: MA Yunfei, WANG Yinghui, XIONG Yi, LUAN Zewei, SHU Kanghao, LÜ Wei. Effect of Laser Shock Processing on Microstructure and Mechanical Properties of 300M Steel[J]. Development and Application of Materials, 2022, 37(6): 55-62.

激光冲击强化对300M钢微观组织和力学性能的影响

基金项目: 

国家自然科学基金项目Nos.U1804146、52111530068

河南省外专引智计划项目HNGD2020009

详细信息
    作者简介:

    马云飞,男,1996年生,硕士研究生,研究方向为先进钢铁材料及其激光表面改性。E-mail:myf234515@163.com

  • 中图分类号: TG142.1

Effect of Laser Shock Processing on Microstructure and Mechanical Properties of 300M Steel

  • 摘要: 采用激光冲击强化(LSP)技术在300M钢表层制备梯度纳米结构,并借助三维表面形貌仪、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)、纳米压痕仪及拉伸试验机对300M钢不同脉冲能量LSP处理后的微观组织演变和力学性能变化进行表征。结果表明,300M钢经LSP处理后表层形成梯度纳米结构,随着脉冲能量的增加,表层晶粒尺寸从15 nm(3J)细化至10 nm(7J)左右,晶粒出现非晶化;同时,次表层组织中形成了大量位错缠结及形变孪晶等亚结构缺陷,且随着脉冲能量的增加位错密度急剧增高,同时形变孪晶数量也随之增多。LSP后300M钢表层纳米压痕硬度得到显著提高,且随着脉冲能量的增加而增加;强度和塑性得到一定程度的改善,断口形貌由典型的韧性断裂转变为韧-脆混合型断裂。

     

  • [1] ZHANG S S,LI M Q, LIU Y G, et al. The growth behavior of austenite grain in the heating process of 300M steel[J]. Materials Science and Engineering:A, 2011, 528(15):4967-4972.
    [2] SKUBISZ P, SINCZAK J. Properties of directquen-ched aircraft forged component made of ultrahig-hstrength steel 300M[J]. Aircraft Engineering and Aerospace Technology, 2018, 90(5):713-719.
    [3] GUO Q, LIU J H, YU M, et al. Influence of rust layers on the corrosion behavior of ultra-high strength steel 300M subjected to wet-dry cyclic environment with chloride and low humidity[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(2):139-146.
    [4] HAMEED A, ZUBAIR O, SHAMS T A,et al. Failure analysis of a broken support strut of an aircraft landing gear[J]. Engineering Failure Analysis, 2020, 117:104847.
    [5] ACHARYA S, SUWAS S, CHATTERJEE K. Review of recent developments in surface nanocrystallization of metallic biomaterials[J]. Nanoscale, 2021, 13(4):2286-2301.
    [6] 刘蕾, 孙剑伟. 轴承表面改性技术的研究现状与展望[J]. 材料开发与应用, 2019, 34(4):84-90.
    [7] GUO W,SUN R, SONG B,et al. Laser shock pee-ning of laser additive manufactured Ti6Al4V titanium alloy[J]. Surface and Coatings Technology, 2018, 349:503-510.
    [8] CHATTOPADHYAY A, MUVVALA G, SARKAR S, et al. Effect of laser shock peening on microstructural, mechanical and corrosion properties of laser beam welded commercially pure titanium[J]. Optics & Laser Technology, 2021, 133:106527.
    [9] LOUS, LIY, ZHOU L,etal. Surface nanocrystalliza-tion of metallic alloys with different stacking fault energy induced by laser shock processing[J]. Materials&Design, 2016, 104:320-326.
    [10] LI Y Q, WANG X D, SONG F L, et al. Effect of residual stress and microstructures on 316 stainless steel treated by LSP[J]. Materials Science Forum, 2017, 898:1261-1265.
    [11] ZHANG H P,CAI Z Y, WAN Z D, et al. Microstructure and mechanical properties of laser shock peened 38CrSi steel[J]. Materials Science and Engineering:A, 2020, 788:139486.
    [12] 汪军, 李民, 汪静雪, 等. 激光冲击强化对304不锈钢疲劳寿命的影响[J]. 中国激光, 2019, 46(1):8.
    [13] 陈彬, 张兴权. 激光冲击强化对回转支承用钢42CrMo表面性能的影响[J]. 表面技术, 2019, 48(2):72-78.
    [14] WANG C Y, LUO K Y, BU X Y,et al. Laser shock peening-induced surface gradient stress distribution and extension mechanism in corrosion fatigue life of AISI 420 stainless steel[J]. Corros-ion Science, 2020, 177:109027.
    [15] LU J Z,LUOKY, ZHANGYK, etal. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J]. Acta Materialia, 2010, 58(16):5354-5362.
    [16] LUOS, ZHOUL, WANGX, et al. Surface nanocrystallization and amorphization of dual-phase TC11 titani-um alloys under laser induced ultrahigh strain-rate plastic deformation[J]. Materials (Basel, Switzerland), 2018, 11(4):E563.
    [17] YE C, SUSLOV S, FEI X,et al. Bimodal nanocrystallization of NiTi shape memory alloy by laser shock peening and post-deformation annealing[J]. Acta Materialia, 2011, 59(19):7219-7227.
    [18] LUJ Z, LUOK Y, ZHANGYK, etal. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11):3984-3994.
    [19] 高玉魁, 陶雪菲. 高速冲击表面处理对金属材料力学性能和组织结构的影响[J]. 爆炸与冲击, 2021, 41(4):4-29.
    [20] AN X H, WU S D, WANG Z G, et al. Significance of stacking fault energy in bulk nanostructured materi-als:insights from Cu and its binary alloys as model systems[J]. Progress in Materials Science, 2019, 101:1-45.
    [21] LI Y S,ZHANG Y, TAO N R, et al. Effect of the Zener-Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation[J]. Acta Materialia, 2009, 57(3):761-772.
    [22] LIUD, LIU D X, ZHANG X H,et al. Surface nanocrystallization of 17-4 precipitation-hardening stain-less steel subjected to ultrasonic surface rolling proc-ess[J]. Materials Science and Engineering:A, 2018, 726:69-81.
    [23] ZHOULC, LIYH, HEWF, et al.Deforming TC6 titanium alloys at ultrahigh strain rates during multiple laser shock peening[J]. Materials Science and Engineering:A, 2013, 578:181-186.
    [24] DHAKAL B, SWAROOP S. Effect of laser shock peening on mechanical and microstructural aspects of 6061-T6 aluminum alloy[J]. Journal of Materials Processing Technology, 2020, 282:116640.
    [25] BRANDSTETTER S, DERLETPM, VAN PETEGEMS, etal. Williamson-hall anisotropy in nanocrystalline metals:X-ray diffraction experiments and atomistic simulations[J]. Acta Materialia, 2008, 56(2):165-176.
    [26] MARKMANN J, YAMAKOV V, WEISSMüLLERJ. Validating grain size analysis from X-ray line broadening:a virtual experiment[J]. Scripta Materialia, 2008, 59(1):15-18.
    [27] RAI A K, BISWALR, Gupta, RK, et al. Study on the effect of multiple laser shock peening on residual stress and microstructural changes in modified 9Cr-1Mo (P91) steel[J]. Surface and Coatings Technology, 2019, 358:125-135.
    [28] 熊毅, 李鹏燕, 陈路飞, 等. 激光冲击处理超细晶粒高碳钢的微观组织和力学性能[J]. 材料研究学报, 2015, 29(6):469-474.
    [29] 卢柯. 梯度纳米结构材料[J]. 金属学报, 2015, 51(1):1-10.
    [30] LUJ Z,LUOKY,ZHANGY K, et al. Effects of laser shock processing and strain rate on tensile property of LY2 aluminum alloy[J]. Materials Science and Engineering:A, 2010, 528(2):730-735.
  • 加载中
计量
  • 文章访问数:  58
  • HTML全文浏览量:  15
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-22
  • 网络出版日期:  2023-01-12

目录

    /

    返回文章
    返回