留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MnO2在超级电容器电极材料中的研究进展

孙翔 罗志斌

孙翔, 罗志斌. MnO2在超级电容器电极材料中的研究进展[J]. 材料开发与应用, 2022, 37(4): 93-100.
引用本文: 孙翔, 罗志斌. MnO2在超级电容器电极材料中的研究进展[J]. 材料开发与应用, 2022, 37(4): 93-100.
SUN Xiang, LUO Zhibin. Research Progress of MnO2 as Supercapacitor Electrode Materials[J]. Development and Application of Materials, 2022, 37(4): 93-100.
Citation: SUN Xiang, LUO Zhibin. Research Progress of MnO2 as Supercapacitor Electrode Materials[J]. Development and Application of Materials, 2022, 37(4): 93-100.

MnO2在超级电容器电极材料中的研究进展

详细信息
    作者简介:

    孙翔,男,1988年生,硕士,工程师,主要从事电力设计、能源咨询、氢能和储能等技术研究。

  • 中图分类号: TB332

Research Progress of MnO2 as Supercapacitor Electrode Materials

  • 摘要: 超级电容器因其超快速的充放电速度而在众多储能器件中占据不可替代的地位。此外,它还具有循环寿命长、维护简单、安全环保、成本低等诸多优势。以各类碳基材料为代表的超级电容器的比电容通常较低,难以满足社会发展对高能的需求。以各类金属化合物为代表的赝电容器可通过快速的法拉第反应存储更多的能量,因而受到现代社会的青睐。其中,MnO2是最早被提出来的一类传统赝电容器电极材料,其晶相结构丰富,具有可供电解液离子快速进出的隧道结构,理论比容量高,但其存在电子电导率低、循环稳定性差等问题。作者选择了最具代表性的两类MnO2材料——α相和δ相MnO2,介绍了这两种晶相的储能机理和研究现状,重点介绍目前针对其存在的问题而普遍采用的解决方案,并对MnO2的规模应用提出展望。

     

  • [1] VINNY R T, CHAITRA K, VENKATESH K, et al.An excellent cycle performance of asymmetric supercapacitor based on bristles like α-MnO2 nanoparticles grown on multiwalled carbon nanotubes[J].Journal of Power Sources, 2016, 309:212-220.
    [2] DARAGHMEH A, HUSSAIN S, HAQ A U, et al.Carbon nanocomposite electrodes for electrical double layer capacitor[J].Journal of Energy Storage, 2020, 32:101798.
    [3] 王永芳,左宋林.含磷活性炭作为双电层电容器电极材料的电化学性能[J].物理化学学报, 2016, 32(2):481-492.
    [4] 刘睿懿,吴浩然,王政,等.碗型NiCo2O4纳米片簇应用于高性能不对称超级电容器电极材料[J].Science China Materials, 2020, 63(12):2456-2464.
    [5] 陈明华,刘威铎,范鹤,等.钼基化合物超级电容器电极材料研究进展[J].哈尔滨理工大学学报, 2020, 25(6):1-9.
    [6] 倪航,刘万能,毛志鹏,等.MgCo2O4超级电容器电极材料的制备及其电化学性能研究[J].江汉大学学报(自然科学版), 2020, 48(6):13-22.
    [7] 吴学亮,王延敏,李廷希.聚苯胺及其复合物作为超级电容器电极材料的研究进展[J].化学推进剂与高分子材料, 2020, 18(6):1-10.
    [8] 杨自涛,吴方棣,胡家朋,等.聚苯胺/N掺杂多孔碳复合材料的原位合成及其超级电容器性能[J].电子元件与材料, 2020, 39(11):16-20.
    [9] 王长城,胡红利,李龙,等.过渡金属氧化物在超级电容器中的研究进展[J].电力电容器与无功补偿, 2020, 41(5):81-87.
    [10] 张洵,李培,王政德,等.超级电容器用二维Ti3C2T<em>x过渡金属碳/氮化物材料的研究进展[J].过程工程学报, 2019, 19(1):35-44.
    [11] 王啸,田凌,龙霄,等.碳布上生长的开裂树皮状三元金属硫化物(NiCoMnS4)纳米结构用于高性能水系非对称超级电容器[J].Science China Materials, 2021, 64(7):1632-1641.
    [12] 朱基亮.超级电容器用金属层状双氢氧化物电极材料研究进展[J].四川师范大学学报(自然科学版), 2020, 43(3):285-296.
    [13] 李祥,罗咏梅,罗源.超级电容器RuO2及其金属氧化物复合电极材料的研究现状[J].广东化工, 2017, 44(15):144-145.
    [14] MUSIL M, CHOI B, TSUTSUMI A.Morphology and electrochemical properties of α-, β-, γ-, and δ-MnO2 synthesized by redox method[J].Journal of the Electrochemical Society, 2015, 162(10):A2058-A2065.
    [15] FITZPATRICK J, TYE F L.The manganese dioxide electrode part XI:an X-ray diffraction study of materials produced by H insertion into an EMD[J].Journal of Applied Electrochemistry, 1991, 21(2):130-135.
    [16] CHENG S, YANG L F, CHEN D C, et al.Phase evolution of an alpha MnO2-based electrode for pseudo-capacitors probed by in operando Raman spectroscopy[J].Nano Energy, 2014, 9:161-167.
    [17] HSU Y K, CHEN Y C, LIN Y G, et al.Reversible phase transformation of MnO2 nanosheets in an electrochemical capacitor investigated by in situ Raman spectroscopy[J].Chemical Communications (Cambridge, England), 2011, 47(4):1252-1254.
    [18] YOUNG M J, HOLDER A M, GEORGE S M, et al.Charge storage in cation incorporated α-MnO2[J].Chemistry of Materials, 2015, 27(4):1172-1180.
    [19] JI S H, CHODANKAR N R, JANG W S, et al.High mass loading of h-WO3 and α-MnO2 on flexible carbon cloth for high-energy aqueous asymmetric supercapacitor[J].Electrochimica Acta, 2019, 299:245-252.
    [20] MA Z P, SHAO G J, FAN Y Q, et al.Construction of hierarchical α-MnO2 Nanowires@Ultrathin δ-MnO2 nanosheets core-shell nanostructure with excellent cycling stability for high-power asymmetric supercapacitor electrodes[J].ACS Applied Materials&Interfaces, 2016, 8(14):9050-9058.
    [21] LI Z S, LIU Z H, LI D H, et al.Facile synthesis of α-MnO2 nanowires/spherical activated carbon composite for supercapacitor application in aqueous neutral electrolyte[J].Journal of Materials Science:Materials in Electronics, 2015, 26(1):353-359.
    [22] WANG C L, LI F T, WANG Y N, et al.Facile synthesis of nanographene sheet hybrid α-MnO2 nanotube and nanoparticle as high performance electrode materials for supercapacitor[J].Journal of Alloys and Compounds, 2015, 634:12-18.
    [23] PRASAD K R, MIURA N.Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors[J].Journal of Power Sources, 2004, 135(1-2):354-360.
    [24] DONNE S W, HOLLENKAMP A F, JONES B C.Structure, morphology and electrochemical behaviour of manganese oxides prepared by controlled decomposition of permanganate[J].Journal of Power Sources, 2010, 195(1):367-373.
    [25] SHEN H J, ZHANG Y, SONG X L, et al.Facile hydrothermal synthesis of actiniaria-shaped α-MnO2/activated carbon and its electrochemical performances of supercapacitor[J].Journal of Alloys and Compounds, 2019, 770:926-933.
    [26] JAYACHANDRAN M, ROSE A, MAIYALAGAN T, et al.Effect of various aqueous electrolytes on the electrochemical performance of α-MnO2 nanorods as electrode materials for supercapacitor application[J].Electrochimica Acta, 2021, 366:137412.
    [27] SU X H, YANG X F, YU L, et al.A facile one-pot hydrothermal synthesis of branched α-MnO2 nanorods for supercapacitor application[J].CrystEngComm, 2015, 17(31):5970-5977.
    [28] SANKAR S, INAMDAR A I, IM H, et al.Template-free rapid sonochemical synthesis of spherical α-MnO2 nanoparticles for high-energy supercapacitor electrode[J].Ceramics International, 2018, 44(14):17514-17521.
    [29] KIANI M A, KHANI H, MOHAMMADI N.MnO2/ordered mesoporous carbon nanocomposite for electrochemical supercapacitor[J].Journal of Solid State Electrochemistry, 2014, 18(4):1117-1125.
    [30] SUN L D, LI N, ZHANG S D, et al.Nitrogen-containing porous carbon/α-MnO2 nanowires composite electrode towards supercapacitor applications[J].Journal of Alloys and Compounds, 2019, 789:910-918.
    [31] SHIVAKUMARA S, MUNICHANDRAIAH N.In-situ preparation of nanostructured α-MnO2/polypyrrole hybrid composite electrode materials for high performance supercapacitor[J].Journal of Alloys and Compounds, 2019, 787:1044-1050.
    [32] PURTY B, CHOUDHARY R B, BISWAS A, et al.Chemically grown mesoporous f-CNT/α-MnO2/PIn nanocomposites as electrode materials for supercapacitor application[J].Polymer Bulletin, 2019, 76(4):1619-1640.
    [33] 黎阳,谢华清,李靖.水热合成制备Al掺杂α-MnO2纳米管及其超级电容器电化学性能(英文)[J].物理化学学报, 2015, 31(4):693-699.
    [34] 王丰梅,徐光伟,金成昌.掺铋α-MnO2纳米棒的合成及超电容性能[J].高等学校化学学报, 2018, 39(3):530-536.
    [35] MONDAL D, DAS S, PAUL B K, et al.Size engineered Cu-doped α-MnO2 nanoparticles for exaggerated photocatalytic activity and energy storage application[J].Materials Research Bulletin, 2019, 115:159-169.
    [36] LIN H, ZHANG M, MIAO J, et al.Synthesis and electrochemical properties of Er/α-MnO2 microspheres for supercapacitors application[J].Ionics, 2019, 25(8):3867-3873.
    [37] MONDAL D, PAUL B K, BHATTACHARYA D, et al.Copper-doped α-MnO2 nano-sphere:metamaterial for enhanced supercapacitor and microwave shielding applications[J].Journal of Materials Chemistry C, 2021, 9(15):5132-5147.
    [38] CHEN D C, DING D, LI X X, et al.Probing the charge storage mechanism of a pseudocapacitive MnO2 electrode using in operando Raman spectroscopy[J].Chemistry of Materials, 2015, 27(19):6608-6619.
    [39] YANG L F, CHENG S, JI X, et al.Investigations into the origin of pseudocapacitive behavior of Mn3O4 electrodes using in operando Raman spectroscopy[J].Journal of Materials Chemistry A, 2015, 3(14):7338-7344.
    [40] YANG L F, CHENG S, WANG J, et al.Investigation into the origin of high stability of δ-MnO2 pseudo-capacitive electrode using operando Raman spectroscopy[J].Nano Energy, 2016, 30:293-302.
    [41] DONG R T, YE Q L, KUANG L L, et al.Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transition-metal ions[J].ACS Applied Materials&Interfaces, 2013, 5(19):9508-9516.
    [42] YAO M H, JI X, CHOU T F, et al.Simple and cost-effective approach to dramatically enhance the durability and capability of a layered δ-MnO2 based electrode for pseudocapacitors:a practical electrochemical test and mechanistic revealing[J].ACS Applied Energy Materials, 2019, 2(4):2743-2750.
    [43] ZHANG Q Z, ZHANG D, MIAO Z C, et al.Research progress in MnO2-carbon based supercapacitor electrode materials[J].Small, 2018, 14(24):1702883.
    [44] RADHAMANI A V, SURENDRA M K, RAO M S R.Zn doped δ-MnO2 nano flakes:an efficient electrode material for aqueous and solid state asymmetric supercapacitors[J].Applied Surface Science, 2018, 450:209-218.
    [45] WANG J F, YANG H P, SUN Q Q, et al.Synthesis of δ-MnO2/C assisted with carbon sheets by directly carbonizing from corn stalk for high-performance supercapacitor[J].Materials Letters, 2021, 285:129116.
    [46] SHEN H J, KONG X D, ZHANG P, et al.In-situ hydrothermal synthesis of δ-MnO2/soybean pod carbon and its high performance application on supercapacitor[J].Journal of Alloys and Compounds, 2021, 853:157357.
    [47] WU P, CHENG S, YANG L F, et al.Synthesis and characterization of self-standing and highly flexible δ-MnO2@CNTs/CNTs composite films for direct use of supercapacitor electrodes[J].ACS Applied Materials&Interfaces, 2016, 8(36):23721-23728.
    [48] ZHANG J Y, YANG X F, HE Y B, et al.δ-MnO2/holey graphene hybrid fiber for all-solid-state supercapacitor[J].Journal of Materials Chemistry A, 2016, 4(23):9088-9096.
    [49] TANG L J, JI X, LUO H W, et al.Achievement of high durability of δ-MnO2 based pseudocapacitive electrode enabled by Zn doping induced reattachment[J].Journal of Alloys and Compounds, 2020, 834:155117.
    [50] ZHAO S Q, LIU T M, JAVED M S, et al.Rational synthesis of Cu-doped porous δ-MnO2 microsphere for high performance supercapacitor applications[J].Electrochimica Acta, 2016, 191:716-723.
    [51] WAN J, JI P Y, LI B X, et al.Enhanced electrochemical performance in an aluminium doped δ-MnO2supercapacitor cathode:experimental and theoretical investigations[J].Chemical Communications, 2022, 58(4):589-592.
  • 加载中
计量
  • 文章访问数:  89
  • HTML全文浏览量:  33
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-23
  • 网络出版日期:  2022-09-13

目录

    /

    返回文章
    返回