Evolution of Microstructure and Mechanical Properties of TB9 Alloy Bar and Wire during Production Process
-
摘要: 通过光学显微镜、扫描电镜、电子背散射衍射技术等系统研究了TB9钛合金棒线材在制备过程中的微观组织及力学性能的演变过程。结果表明:通过真空自耗电弧熔炼、锻造、轧制及拉拔等工艺能够制备出表面质量良好、横截面组织性能一致的不同规格TB9钛合金棒线材产品。其中,开坯锻态组织由随机取向的粗大β相及极少量动态再结晶(DRX)晶粒构成,平均晶粒尺寸在1 000 μm以上。径锻态组织主要由约400 μm的β晶粒构成,累计应变的增加使得DRX晶粒百分数增加。多道次热变形获得的 ϕ10 mm棒材盘圆组织由尺寸为15 μm的细小晶粒组成,具有显著的热加工变形特征,固溶水冷处理能使组织均匀并获得无畸变β晶粒。热拉拔变形能够进一步细化晶粒,并提高TB9钛合金强度,强度最高可达1 100 MPa以上,但塑性有所下降。Abstract: The evolution of microstructures and mechanical properties of TB9 titanium alloy bar and wire during the production process is systematically studied by means of optical microscope, scanning electron microscope and electron backscattered diffraction. The results show that the TB9 titanium alloy bar and wire with good surface quality, consistent cross-section microstructures and properties can be prepared by vacuum consumable arc melting, forging, rolling and drawing. The as-forged microstructure is composed of randomly oriented coarse β grains and very few dynamic recrystallization(DRX) grains, with an average grain size of more than 1 000 μm. The radial forged microstructure is mainly composed of β grains with the size of about 400 μm, and the increase of cumulative deformation increases the DRX fraction. The microstructure of ϕ10 mm wire rod obtained by multi-pass hot deformation is composed of fine grains of 15 μm, which has obvious hot deformation characteristics. Compared with air cooling, the water cooling of solid solution treatment can obviously uniform the microstructure and obtain distortionless β grains. The hot drawing deformation can further refine the grains and improve the strength of TB9 titanium alloy up to more than 1 100 MPa, while reduces the plasticity.
-
Key words:
- TB9 titanium alloy /
- bar and wire /
- microstructure /
- mechanical properties /
- dynamic recrystallization
-
[1] BANERJEE D, WILLIAMS J C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013, 61(3):844-879. [2] 罗焱泽,丁强伟,李志强,等.钛合金弹簧工艺优化及可靠性研究[J].材料开发与应用, 2022, 37(4):65-70. [3] 董瑞峰,李金山,唐斌,等.航空紧固件用钛合金材料发展现状[J].航空制造技术, 2018, 61(4):86-91. [4] 王健,黄鎏杰,金伟.热处理对TB9合金力学性能及显微组织的影响[J].稀有金属材料与工程, 2017, 46(S1):129-133. [5] 李蒙,凤伟中,关蕾,等.航空航天紧固件用钛合金材料综述[J].有色金属材料与工程, 2018, 39(4):49-53. [6] 尚庆慧,郭金明,王国栋,等.固溶和时效处理对TB9钛合金显微组织及力学性能的影响[J].热加工工艺, 2023, 52(14):147-149. [7] 韩伟松,朱宝辉,李建锋,等.热处理对Ti-38644钛合金棒材组织和性能的影响[J].金属热处理, 2022, 47(10):185-190. [8] 王雪萌,张思倩,袁子尧,等.时效处理对Ti-3Al-8V-6Cr-4Mo-4Zr合金力学性能的影响[J].材料研究学报, 2017, 31(6):409-414. [9] LI C M, HUANG L, ZHAO M J, et al. Hot deformation behavior and mechanism of a new metastable β titanium alloy Ti-6Cr-5Mo-5V-4Al in single phase region[J]. Materials Science and Engineering:A, 2021, 814:141231. [10] 牟芃威,吕书锋,杜赵新.固溶和时效温度对铸态TC18合金组织性能的影响[J].钢铁钒钛, 2023, 44(2):61-66. [11] DONG E T, YU W, CAI Q W, et al. Effects of β grain-growth behaviors on lamellar structural evolution and mechanical properties of TC4-DT alloy[J]. Materials Research Express, 2020, 7(6):066514.
点击查看大图
计量
- 文章访问数: 43
- HTML全文浏览量: 5
- PDF下载量: 10
- 被引次数: 0