Effect of Y Addition on Microstructure and Mechanical Properties of Ti-6Al-4V-2Cr-1.5Mo Alloy
-
摘要: 通过OM、SEM、XRD和TEM对热处理态Ti-6Al-4V-2Cr-1.5Mo-xY(x=0.1,0.5,1.0,1.5,质量分数)合金的组织和力学性能进行分析,发现添加稀土Y元素后,合金的组织得到了明显的细化,产生的稀土氧化物Y2O3弥散分布在基体中;且当Y元素的添加量为0.5%时,合金的强度、硬度和伸长率最好,性能最优。对热处理态的Ti-6Al-4V-2Cr-1.5Mo-0.5Y进行分析,发现析出相Y2O3与基体α-Ti之间的错配度为0.141 3,属于半共格界面。
-
关键词:
- Ti-6Al-4V-2Cr-1.5Mo合金 /
- 稀土Y元素 /
- 力学性能 /
- 形核过程
Abstract: The microstructures and mechanical properties of Ti-6Al-4V-2Cr-1.5 Mo-xY (x =0.1, 0.5, 1.0, 1.5, mass fraction) alloys are analyzed by means of OM, SEM, XRD, and TEM. It is found out that the microstructures of Ti-6Al-4V-2Cr-1.5 Mo-xY alloys are refined obviously after adding the rare earth Y element, that the Y2O3 phases formed are dispersed in the matrix, and that the mechanical properties of the alloy increase first and then decrease with the increase of the content of rare earth Y. The strength, hardness, elongation and properties of the alloy are the best when the addition of Y element is 0.5%. The mismatch between Y2O3 and the matrix α-Ti of the annealed Ti-6Al-4V-2Cr-1.5 Mo-0.5 Y is 0.141 3, which belongs to semi-coherent interface. -
[1] 刘奇先,刘杨,高凯.钛合金的研究进展与应用[J].航天制造技术, 2011(4):45-48. [2] 吴欢,赵永庆,葛鹏,等. β稳定元素对钛合金α相强化行为的影响[J].稀有金属材料与工程, 2012, 41(5):805-810. [3] HUANG P Y. Powder metallurgy principle[M]. Beijing:Metallurgical Industry Press, 2004:133. [4] SHEINKER, CHANANIC, BOHLEN. Evaluation and application of pre-alloyed titanium P/M parts for airframe structures[J]. Int. J. Powder Metall., 1987, 23(3):171-179. [5] 刘超,刘国威,郭雷明,等.稀土元素Er对Ti-6Al-4V-0.5Si合金组织与性能的影响[J].金属热处理, 2020, 45(12):222-226. [6] 王利卿,肖邦,赵少阳,等. Y元素对铸造Ti-6Al-4V合金微观组织与力学性能的影响[J].稀有金属材料与工程, 2020, 49(12):4142-4145. [7] 张飞奇,陈文革,闫超峰.微量硼元素添加对Ti6Al4V-xB组织及性能的影响[J].稀有金属材料与工程, 2018, 47(3):932-936. [8] 李成功,傅恒志,于翘,等.航空航天材料[M].北京:国防工业出版社, 2002:23-24. [9] KLENZ E. Titaniium industry overview. International Titanium Association:TITANIUM 2008. 2008, Las Vegas, USA. [10] 王红卫,孙敏,魏永前. Ti6Al4V-TiN系梯度材料的设计[J].材料开发与应用, 2000, 15(1):1-4. [11] 何伟,马红征,苗壮,等.钛合金Ti6Al4V螺钉断裂原因分析[J].材料开发与应用, 2022, 37(6):124-128. [12] HOEG H,王习.氢对Ti6Al4V断裂性能和显微组织的影响[J].国外舰船技术(材料类), 1982(1):21-28. [13] CAO C X. One generation of material technology, one generation of large aircraft[J]. Acta Aeronautica Et Astronautica Sinica, 2008, 29(3):701-706. [14] 卢金文,赵永庆,葛鹏,等.合金元素Mo对钛合金相析出行为的影响[J].钛工业进展, 2012, 29(2):10-14. [15] 麻西群,孙巧艳,曹伟产,等. α钛合金在室温和低温的冲击韧性[J].稀有金属快报, 2006, 25(5):18-21. [16] 魏寿勇,石卫民,郭桂林,等. β稳定元素Mo对600℃高温钛合金组织和性能的影响[J].中国有色金属学报, 2013, 23(1):121-124. [17] 崔文芳,周廉,罗国珍,等.钇对Ti-1100高温钛合金热稳定性和蠕变行为的影响[J].中国稀土学报, 1998, 16(3):237-241. [18] 黄文君,王文焱,史士钦,等. Mo含量对粉末烧结Ti-6Al-4V-2Cr合金组织和力学性能的影响[J].特种铸造及有色合金, 2017, 37(5):568-571. [19] 张云鹏,周泽宇,闫妍.强迫剪切条件下Ti-6Al-4V合金的绝热剪切失效[J].材料开发与应用, 2013, 28(6):20-23. [20] ZHAO Y Q, QU H L, ZHU K Y, et al. The second phases in Ti40 burn resistant alloy after high temperature exposure for a long time[J]. Journal of Alloys and Compounds, 2002, 333(1-2):165-169. [21] WU Y, HWANG S K, NAM S W, et al. The effect of yttrium addition on the oxidation resistance of EPM TiAl-based intermetallics[J]. Scripta Materialia, 2003, 48(12):1655-1660. [22] WU Y, HAGIHARA K, UMAKOSHI Y. Influence of Y-addition on the oxidation behavior of Al-rich γ-TiAl alloys[J]. Intermetallics, 2004, 12(5):519-532. [23] 王新平,李礼,张晓泳,等. TC18钛合金变形本构关系及其热轧过程有限元仿真的应用[J].中国有色金属学报, 2013, 23(2):379-388. [24] 洪权,张振祺. Ti-6Al-2Zr-1Mo-1V合金的热变形行为[J].航空材料学报, 2001, 21(1):10-12. [25] 张长江. Y含量对Ti-6Al-2.5Sn-4Zr-0.7Mo-0.3Si钛合金组织性能的影响[D].哈尔滨:哈尔滨工业大学, 2009. [26] 王悔改,冷文才,李双晓,等.热处理工艺对TC4钛合金组织和性能的影响[J].热加工工艺, 2011, 40(10):181-183. [27] 马英杰,刘建荣,雷家峰,等.钛合金β晶粒生长规律及晶粒尺寸对损伤容限性能的影响[J].稀有金属材料与工程, 2009, 38(6):976-981.
点击查看大图
计量
- 文章访问数: 66
- HTML全文浏览量: 14
- PDF下载量: 28
- 被引次数: 0