留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯基纳米杂化物在防腐涂料中的应用研究进展

慕松伟 梁宇 张心悦 陈凯锋 王晶晶

慕松伟, 梁宇, 张心悦, 陈凯锋, 王晶晶. 氧化石墨烯基纳米杂化物在防腐涂料中的应用研究进展[J]. 材料开发与应用, 2021, 36(6): 83-90,102.
引用本文: 慕松伟, 梁宇, 张心悦, 陈凯锋, 王晶晶. 氧化石墨烯基纳米杂化物在防腐涂料中的应用研究进展[J]. 材料开发与应用, 2021, 36(6): 83-90,102.
MU Songwei, LIANG Yu, ZHANG Xinyue, CHEN Kaifeng, WANG Jingjing. Research Progress in Application of Graphene Oxide Based Nanohybrid in Anti-corrosive Coatings[J]. Development and Application of Materials, 2021, 36(6): 83-90,102.
Citation: MU Songwei, LIANG Yu, ZHANG Xinyue, CHEN Kaifeng, WANG Jingjing. Research Progress in Application of Graphene Oxide Based Nanohybrid in Anti-corrosive Coatings[J]. Development and Application of Materials, 2021, 36(6): 83-90,102.

氧化石墨烯基纳米杂化物在防腐涂料中的应用研究进展

基金项目: 

重点实验室基金项目(6142901180302),厦门市重大科技项目(3502ZCQ20201002),厦门市高校科研院所产学研项目(3202Z20203098)

详细信息
    作者简介:

    慕松伟,男,硕士研究生,主要从事防腐涂料研究

  • 中图分类号: TQ630.4

Research Progress in Application of Graphene Oxide Based Nanohybrid in Anti-corrosive Coatings

  • 摘要: 氧化石墨烯(GO)具有比表面积高、阻隔性好等特点,将其作为填料加入涂料体系中可增强涂层的防腐性能。但是,氧化石墨烯片层间存在的相互作用使其容易形成聚集体,这妨碍了其阻隔性能的充分发挥,严重的聚集甚至会导致涂层机械性能变差。除了氧化石墨烯,其他纳米材料在防腐涂料中同样应用广泛,并且显示出与氧化石墨烯功能互补的特点。研究表明,对氧化石墨烯和其他纳米材料进行表面改性,获得的纳米杂化物能够使防腐涂料获得更好的防腐效果。基于此,总结了氧化石墨烯基纳米杂化物体系在提高涂料防腐性能方面的研究进展,并对其未来发展趋势进行了展望。

     

  • [1] YU J H, HUO R M, WU C, et al. Influence of interface structure on dielectric properties of epoxy/alumina nanocomposites[J]. Macromolecular Research, 2012, 20(8):816-826.
    [2] BAGHERZADEH M R, MAHDAVI F, GHASEMI M, et al. Using nanoemeraldine salt-polyaniline for preparation of a new anticorrosive water-based epoxy coating[J]. Progress in Organic Coatings, 2010, 68(4):319-322.
    [3] HE Y, XU W, TANG R, et al. pH-Responsive nanovalves based on encapsulated halloysite for the controlled release of a corrosion inhibitor in epoxy coating[J]. RSC Advances, 2015, 5(110):90609-90620.
    [4] 赵一志, 沈志刚, 张晓静, 等. 二维纳米材料在腐蚀防护中的应用研究进展[J]. 中国粉体技术, 2021, 27(1):11-21.
    [5] HAGHDADEH P, GHAFFARI M, RAMEZANZADEH B, et al. The role of functionalized graphene oxide on the mechanical and anti-corrosion properties of polyurethane coating[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 86:199-212.
    [6] 王池嘉, 王子华, 刘书佩, 等. 新型碳纳米材料用于有机防腐涂层的研究进展[J]. 表面技术, 2021, 50(3):1-15.
    [7] JIA Z W, SUN W C, GUO F, et al. Microstructure, friction and corrosion resistance properties of a Ni-Co-Al2O3 composite coating[J]. RSC Advances, 2018, 8(22):12138-12145.
    [8] RAMEZANZADEH B, HAERI Z, RAMEZANZADEH M. A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance[J]. Chemical Engineering Journal, 2016, 303:511-528.
    [9] SONG B J, SHI Y C, LIU Q D. An inorganic route to decorate graphene oxide with nanosilica and investigate its effect on anti-corrosion property of waterborne epoxy[J]. Polymers for Advanced Technologies, 2020, 31(2):309-318.
    [10] POURHASHEM S, VAEZI M R, RASHIDI A, et al. Distinctive roles of silane coupling agents on the corrosion inhibition performance of graphene oxide in epoxy coatings[J]. Progress in Organic Coatings, 2017, 111:47-56.
    [11] LIU L Q, GUO X F, SHI L, et al. SiO2-GO nanofillers enhance the corrosion resistance of waterborne polyurethane acrylic coatings[J]. Advanced Composites Letters, 2020, 29:2633366X2094152.
    [12] DU P, WANG J, ZHAO H C, et al. Graphene oxide encapsulated by mesoporous silica for intelligent anticorrosive coating:studies on release models and self-healing ability[J]. Dalton Transactions, 2019, 48(34):13064-13073.
    [13] XU J B, CAO Y Q, FANG L, et al. A one-step preparation of inhibitor-loaded silica nanocontainers for self-healing coatings[J]. Corrosion Science, 2018, 140:349-362.
    [14] SOGUKKANLI S, YILMAZOGLU M, TASDELEN M A, et al. Hybrid film properties of the linseed oil based alkyd resin modified with glycidyl polyhedral oligomeric silsesquioxane[J]. Progress in Organic Coatings, 2018, 124:175-184.
    [15] 梁宇, 陈凯锋, 亓海霞, 等. pH敏感释放型缓蚀防锈填料的制备及性能研究[J]. 材料开发与应用, 2018, 33(1):94-99.
    [16] WANG Y, WEI D B, YU J, et al. Effects of Al2O3 nano-additive on performance of micro-arc oxidation coatings formed on AZ91D Mg alloy[J]. Journal of Materials Science & Technology, 2014, 30(10):984-990.
    [17] BALANI K, AGARWAL A. Process map for plasma sprayed aluminum oxide-carbon nanotube nanocomposite coatings[J]. Surface and Coatings Technology, 2008, 202(17):4270-4277.
    [18] TATSUMA T, SAITOH S, OHKO Y, et al. TiO2-WO3 photoelectrochemical anticorrosion system with an energy storage ability[J]. Chemistry of Materials, 2001, 13(9):2838-2842.
    [19] YU Z X, DI H H, MA Y, et al. Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings[J]. Surface and Coatings Technology, 2015, 276:471-478.
    [20] XIA Y Z, CHENG H, DUO L J, et al. Anticorrosion reinforcement of waterborne polyacrylate coating with nano-TiO2 loaded graphene[J]. Journal of Applied Polymer Science, 2020, 137(21):48733.
    [21] LAI G H, HUANG T C, TSENG I H, et al. Transparency anticorrosion coatings prepared from alumina-covered graphene oxide/polyimide nanocomposites[J]. Express Polymer Letters, 2019, 13(9):772-784.
    [22] WANG C Y, QIN Z H, FENG K, et al. CeO2 modified graphene nanoplatelets composite powders enhanced the cathodic protection of waterborne zinc-rich epoxy coatings[J]. Journal of Polymer Research, 2020, 27(12):1-10.
    [23] RAMEZANZADEH B, BAHLAKEH G, RAMEZANZADEH M. Polyaniline-cerium oxide (PAni-CeO2) coated graphene oxide for enhancement of epoxy coating corrosion protection performance on mild steel[J]. Corrosion Science, 2018, 137:111-126.
    [24] CHHETRI S, GHOSH S, SAMANTA P, et al. Effect of Fe3O4-decorated N-doped reduced graphene oxide nanohybrid on the anticorrosion performance of epoxy composite coating[J]. Chemistry Select, 2019, 4(46):13446-13454.
    [25] CAO K Y, YU Z X, YIN D. Preparation of Ce-MOF@TEOS to enhance the anti-corrosion properties of epoxy coatings[J]. Progress in Organic Coatings, 2019, 135:613-621.
    [26] YIN D. Enhancement of the anti-corrosion performance of composite epoxy coatings in presence of BTA-loaded copper-based metal-organic frameworks[J]. International Journal of Electrochemical Science, 2019:4240-4253.
    [27] KUO S W, CHANG F C. POSS related polymer nanocomposites[J]. Progress in Polymer Science, 2011, 36(12):1649-1696.
    [28] HOU K, ZENG Y C, ZHOU C L, et al. Facile generation of robust POSS-based superhydrophobic fabrics via thiol-ene click chemistry[J]. Chemical Engineering Journal, 2018, 332:150-159.
    [29] CHEN S Y, GUO L H, DU D X, et al. Waterborne POSS-silane-urethane hybrid polymer and the fluorinated films[J]. Polymer, 2016, 103:27-35.
    [30] YE Y W, YANG D P, ZHANG D W, et al. POSS-tetraaniline modified graphene for active corrosion protection of epoxy-based organic coating[J]. Chemical Engineering Journal, 2020, 383:123160.
    [31] GOU L, MA L, ZHAO M J, et al. Co-based metal-organic framework and its derivatives as high-performance anode materials for lithium-ion batteries[J]. Journal of Materials Science, 2019, 54(2):1529-1538.
    [32] CHANG H, WANG Y, XIANG L, et al. Improved H2/CO2 separation performance on mixed-linker ZIF-7 polycrystalline membranes[J]. Chemical Engineering Science, 2018, 192:85-93.
    [33] LEITE J P, GALES L. Fluorescence properties of the amyloid indicator dye thioflavin T in constrained environments[J]. Dyes and Pigments, 2019, 160:64-70.
    [34] GUPTA V, TYAGI S, PAUL A K. Development of biocompatible iron-carboxylate metal organic frameworks for pH-responsive drug delivery application[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(2):646-654.
    [35] LIU C, MULLINS M, HAWKINS S, et al. Epoxy nanocomposites containing zeolitic imidazolate framework-8[J]. ACS Applied Materials & Interfaces, 2018, 10(1):1250-1257.
    [36] LEE S H, SEO H Y, YEOM Y S, et al. Rational design of epoxy/ZIF-8 nanocomposites for enhanced suppression of copper ion migration[J]. Polymer, 2019, 167:224-225.
    [37] RAMEZANZADEH M, RAMEZANZADEH B, MAHDAVIAN M, et al. Development of metal-organic framework (MOF) decorated graphene oxide nanoplatforms for anti-corrosion epoxy coatings[J]. Carbon, 2020, 161:231-251.
    [38] CAO K Y, YU Z X, YIN D, et al. Fabrication of BTA-MOF-TEOS-GO nanocomposite to endow coating systems with active inhibition and durable anticorrosion performances[J]. Progress in Organic Coatings, 2020, 143:105629.
    [39] LIU C, ZHAO H, HOU P, et al. Efficient graphene/cyclodextrin-based nanocontainer:synthesis and host-guest inclusion for self-healing anticorrosion application[J]. ACS Applied Materials & Interfaces, 2018, 10(42):36229-36239.
    [40] LV C, WANG H Y, LIU Z J, et al. Fabrication of durable fluorine-free polyphenylene sulfide/silicone resin composite superhydrophobic coating enhanced by carbon nanotubes/graphene fillers[J]. Progress in Organic Coatings, 2019, 134:1-10.
    [41] WANG L L, ZHU G H, YU W, et al. Integrating nitrogen-doped graphitic carbon with Au nanoparticles for excellent solar energy absorption properties[J]. Solar Energy Materials and Solar Cells, 2018, 184:1-8.
    [42] GAO X Z, LIU H J, CHENG F, et al. Thermoresponsive polyaniline nanoparticles:Preparation, characterization, and their potential application in waterborne anticorrosion coatings[J]. Chemical Engineering Journal, 2016, 283:682-691.
    [43] SUN M, YEROKHIN A, BYCHKOVA M Y, et al. Self-healing plasma electrolytic oxidation coatings doped with benzotriazole loaded halloysite nanotubes on AM50 magnesium alloy[J]. Corrosion Science, 2016, 111:753-769.
    [44] ZAHIDAH K A, KAKOOEI S, ISMAIL M C, et al. Halloysite nanotubes as nanocontainer for smart coating application:a review[J]. Progress in Organic Coatings, 2017, 111:175-185.
    [45] CHEN L G, YU Z X, YIN D, et al. Preparation and anticorrosion properties of BTA@HNTs-GO nanocomposite smart coatings[J]. Composite Interfaces, 2021, 28(1):1-16.
    [46] JIA Y L, QIU T, GUO L H, et al. Preparation of pH responsive smart nanocontainer via inclusion of inhibitor in graphene/halloysite nanotubes and its application in intelligent anticorrosion protection[J]. Applied Surface Science, 2020, 504:144496.
    [47] JIA Y L, QIU T, GUO L H, et al. Reduction-coagulation preparation of hybrid nanoparticles of graphene and halloysite nanotubes for use in anticorrosive waterborne polymer coatings[J]. ACS Applied Nano Materials, 2018, 1(4):1541-1550.
    [48] HUSAIN E, NARAYANAN T N, TAHA-TIJERINA J J, et al. Marine corrosion protective coatings of hexagonal boron nitride thin films on stainless steel[J]. ACS Applied Materials & Interfaces, 2013, 5(10):4129-4135.
    [49] KHAN M H, JAMALI S S, LYALIN A, et al. Atomically thin hexagonal boron nitride nanofilm for Cu protection:the importance of film perfection[J]. Advanced Materials, 2017, 29(4):1603937.
    [50] SHEN L T, ZHAO Y D, WANG Y, et al. A long-term corrosion barrier with an insulating boron nitride monolayer[J]. Journal of Materials Chemistry A, 2016, 4(14):5044-5050.
    [51] WU Y Q, HE Y, CHEN C L, et al. Non-covalently functionalized boron nitride by graphene oxide for anticorrosive reinforcement of water-borne epoxy coating[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 587:124337.
    [52] HUANG H W, HUANG X F, XIE Y H, et al. Fabrication of h-BN-rGO@PDA nanohybrids for composite coatings with enhanced anticorrosion performance[J]. Progress in Organic Coatings, 2019, 130:124-131.
    [53] TEDIM J, KUZNETSOVA A, SALAK A N, et al. Zn-Al layered double hydroxides as chloride nanotraps in active protective coatings[J]. Corrosion Science, 2012, 55:1-4.
    [54] ZHELUDKEVICH M L, POZNYAK S K, RODRIGUES L M, et al. Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor[J]. Corrosion Science, 2010, 52(2):602-611.
    [55] LI D D, WANG F Y, YU X, et al. Anticorrosion organic coating with layered double hydroxide loaded with corrosion inhibitor of tungstate[J]. Progress in Organic Coatings, 2011, 71(3):302-309.
    [56] YU D Y, WEN S G, YANG J X, et al. RGO modified ZnAl-LDH as epoxy nanostructure filler:a novel synthetic approach to anticorrosive waterborne coating[J]. Surface and Coatings Technology, 2017, 326:207-215.
    [57] NGUYEN T D, TRAN B A, VU K O, et al. Corrosion protection of carbon steel using hydrotalcite/graphene oxide nanohybrid[J]. Journal of Coatings Technology and Research, 2019, 16(2):585-595.
    [58] CHEN C L, HE Y, XIAO G Q, et al. Synergistic effect of graphene oxide@phosphate-intercalated hydrotalcite for improved anti-corrosion and self-healable protection of waterborne epoxy coating in salt environments[J]. Journal of Materials Chemistry C, 2019, 7(8):2318-2326.
  • 加载中
计量
  • 文章访问数:  131
  • HTML全文浏览量:  90
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-03
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回