留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ta掺杂对γ-TiAl基合金块状组织和力学性能的影响

张可人 张乐乐 潘恒沛 陈洁明 赵惠

张可人, 张乐乐, 潘恒沛, 陈洁明, 赵惠. Ta掺杂对γ-TiAl基合金块状组织和力学性能的影响[J]. 材料开发与应用, 2022, 37(6): 76-82.
引用本文: 张可人, 张乐乐, 潘恒沛, 陈洁明, 赵惠. Ta掺杂对γ-TiAl基合金块状组织和力学性能的影响[J]. 材料开发与应用, 2022, 37(6): 76-82.
ZHANG Keren, ZHANG Lele, PAN Hengpei, CHEN Jieming, ZHAO Hui. Influence of Ta Doping on Microstructure and Mechanical Properties of γ-TiAl Based Alloy[J]. Development and Application of Materials, 2022, 37(6): 76-82.
Citation: ZHANG Keren, ZHANG Lele, PAN Hengpei, CHEN Jieming, ZHAO Hui. Influence of Ta Doping on Microstructure and Mechanical Properties of γ-TiAl Based Alloy[J]. Development and Application of Materials, 2022, 37(6): 76-82.

Ta掺杂对γ-TiAl基合金块状组织和力学性能的影响

基金项目: 

陕西省教育厅科研计划项目(No.21JC027)

陕西省自然科学基础研究计划项目(No.2021JM-403、No.2022JQ-359)

详细信息
    作者简介:

    张可人,女,1990年生,博士,讲师,研究方向为先进钛合金改性行为。

  • 中图分类号: TG146

Influence of Ta Doping on Microstructure and Mechanical Properties of γ-TiAl Based Alloy

  • 摘要: 研究了Ti-48Al-2Nb-2Cr-xTa(x=0,1.0,2.0)(原子分数,%)合金α单相区淬火,块状组织(γm相)的演变规律,采用EBSD(电子背散射衍射)技术对晶粒取向进行表征。结果表明,在快速冷却条件下,微量Ta元素的添加能够促进γm相的析出,促进(体积分数大于50%)或者抑制(体积分数小于50%)γm相析出的Ta元素临界含量为2 %(原子分数)。Ta元素能够细化γm相亚颗粒,同时,不同种类γm变体可直接在α2晶粒内以BOR形核,在生长过程中发生了沿着{111}γ密排面的变体选择,使得第二代γm变体偏离BOR。

     

  • [1] ZHANG X S, CHEN Y J, HU J L. Recent advances in the development of aerospace materials[J]. Progress in Aerospace Sciences, 2018, 97:22-34.
    [2] LIU J H, ZHANG F Q, NAN H, et al. Effect of C addition on as-cast microstructures of high Nb containing TiAl alloys[J]. Metals, 2019, 9(11):1201.
    [3] HAUßMANN L, NEUMEIER S, BRESLER J, et al. Influence of Nb, Ta and Zr on the interdiffusion coefficients and solid solution strengthening of γ-TiAl single phase alloys[J]. Metals, 2022, 12(5):752.
    [4] LAPIN J, MAREK K. Effect of continuous cooling on solid phase transformations in TiAl-based alloy during Jominy end-quench test[J]. Journal of Alloys and Compounds, 2018, 735:338-348.
    [5] ZHANG K R, HU R, YANG J R, et al. The phase transformation behavior between γ lamellae and massive γ in a Ta containing TiAl-based alloy[J]. Journal of Alloys and Compounds, 2020, 821:153290.
    [6] CHEN H M, LI X W, CHEN Z P, et al. Investigation on electronic structures and mechanical properties of Nb-doped TiAl2 intermetallic compound[J]. Journal of Alloys and Compounds, 2019, 780:41-48.
    [7] FANG H Z, CHEN R R, CHEN X Y, et al. Effect of Ta element on microstructure formation and mechanical properties of high-Nb TiAl alloys[J]. Intermetallics, 2019, 104:43-51.
    [8] HUANG A, HU D, WU X H, et al. The influence of interrupted cooling on the massive transformation in Ti46Al8Nb[J]. Intermetallics, 2007, 15(9):1147-1155.
    [9] DEY S R, BOUZY E, HAZOTTE A. Intragranular nucleation sites of massive γ grains in a TiAl-based alloy[J]. Scripta Materialia, 2007, 57(4):365-368.
    [10] LIU G H, LI T R, FU T L, et al. Morphology and competitive growth during the development of the parallel lamellar structure by self-seeding in directionally solidified Ti-50Al-4Nb alloy[J]. Journal of Alloys and Compounds, 2016, 682:601-609.
    [11] MASSALSKI T B, LAUGHLIN D E, SOFFA W A. The nature and role of incoherent interphase interfaces in diffusional solid-solid phase transformations[J]. Metallurgical and Materials Transactions A, 2006, 37(3):825-831.
    [12] AARONSON H I. Mechanisms of the massive transformation[J]. Metallurgical and Materials Transactions A, 2002, 33(8):2285-2297.
    [13] SANKARAN A, BOUZY E, HUMBERT M, et al. Variant selection during nucleation and growth of γ-massive phase in TiAl-based intermetallic alloys[J]. Acta Materialia, 2009, 57(4):1230-1242.
    [14] 杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51(2):129-147.
    [15] GAO Z T, HU R, HUANG Z J, et al. Metastable transformation behavior in a Ta-containing TiAl-Nb alloy during continuous cooling[J]. Journal of Alloys and Compounds, 2022, 904:164088.
    [16] DEY S R, HAZOTTE A, BOUZY E. Crystallography and phase transformation mechanisms in TiAl-based alloys-A synthesis[J]. Intermetallics, 2009, 17(12):1052-1064.
    [17] ZHANG K R, HU R, LI J G, et al. Grain refinement of 1 at.% Ta-containing cast TiAl-based alloy by cyclic air-cooling heat treatment[J]. Materials Letters, 2020, 274:127940.
    [18] SAEEDIPOUR S, KERMANPUR A, SADEGHI F. Effect of N addition on microstructure refinement and high temperature mechanical properties of Ti-46Al-8Ta (at.%) intermetallic alloy[J]. Journal of Alloys and Compounds, 2020, 817:152749.
    [19] LAPIN J, PELACHOVÁ T, DOMÁNKOVÁ M. Lon-gterm creep behaviour of cast TiAl-Ta alloy[J]. Intermetallics, 2018, 95:24-32.
    [20] SAAGE H, HUANG A J, HU D, et al. Microstruc-tures and tensile properties of massively transformed and aged Ti46Al8Nb and Ti46Al8Ta alloys[J]. Intermetallics, 2009, 17(1-2):32-38.
    [21] JIANG H, ZHANG K, HAO X J, et al. Nucleation of massive gamma during air cooling of Ti46Al8Ta[J]. Intermetallics, 2010, 18(5):938-944.
    [22] ZHANG K R, HU R, WANG X Y, et al. Precipita-tion of two kinds of γ laths in massive γ coexisting with γ lamellae in as-cast Ta-containing TiAl-Nb alloys[J]. Materials Letters, 2016, 185:480-483.
    [23] HU D, HUANG A J, WU X. On the massive phase transformation regime in TiAl alloys:the alloying effect on massive/lamellar competition[J]. Intermetallics, 2007, 15(3):327-332.
    [24] WANG J G, ZHANG L C, CHEN G L, et al. TEM observations of mechanical twins in a hot-deformed Ti-45Al-10Nb alloy[J]. Materials Science and Engineering:A, 1998, 252(2):222-231.
    [25] FU C L, YOO M H. Interfacial energies in two-phase TiAl-Ti3Al alloy[J]. Scripta Materialia, 1997, 37(10):1453-1459.
    [26] ZHANG K R, HU R, LEI T C, et al. Refinement of massive γ phase with enhanced properties in a Ta containing γ-TiAl-based alloys[J]. Scripta Materialia, 2019, 172:113-118.
    [27] WANG X D, SHEN Y D, SONG S X, et al. Atomic-scale understanding of the γ/α2 interface in a TiAl alloy[J]. Journal of Alloys and Compounds, 2020, 846:156381.
    [28] WITTIG J E. The massive transformation in titanium aluminides:initial stages of nucleation and growth[J]. Metallurgical and Materials Transactions A, 2002, 33(8):2373-2379.
    [29] LIU G H, WANG Z D, FU T L, et al. Study on the microstructure, phase transition and hardness for the TiAl-Nb alloy design during directional solidification[J]. Journal of Alloys and Compounds, 2015, 650:45-52.
  • 加载中
计量
  • 文章访问数:  61
  • HTML全文浏览量:  5
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-06
  • 网络出版日期:  2023-01-12

目录

    /

    返回文章
    返回