Research Progress on Fatigue Behavior of Ultra-High Strength Titanium Alloys
-
摘要: 超高强钛合金具有高比强度、高淬透性、耐损伤和优异的耐蚀性等优点,被广泛应用于飞机起落架、机身框架和紧固件等高强度结构件的制备。在实际服役过程中,这些构件常常在循环载荷的作用下发生疲劳失效,因此深入研究超高强钛合金的疲劳失效规律和失效机理,既具有重要的科学意义,又能对实际工程应用提供指导。本研究综述了目前关于超高强钛合金疲劳行为的研究,并探讨了经变形及热处理调控的微观组织对合金疲劳损伤机制的影响。具体关注了在双态和全片层组织中,α相的取向、体积分数、尺寸和分布等特征参量对合金在疲劳裂纹萌生和扩展两个阶段内的变形行为、损伤模式的作用机理。此外,还关注了超高强钛合金的疲劳性能强化手段,并对未来超高强钛合金疲劳研究方向进行了展望。Abstract: Possessing advantages of high specific strength, high harden ability and excellent corrosion resistance, ultra-high strength titanium alloys have been widely used in high-strength structural components such as landing gears, air frames and fasteners. These structural components are often subjected to cyclic loading during service, leading to fatigue failure as a common failure mode. Therefore, in-depth research on the fatigue failure behaviors and mechanisms of high-strength titanium alloys is not only of great scientific significance,but also provides important guidance for practical engineering applications. In this study, we review the existing researches on the fatigue behaviors of ultra-high strength titanium alloys, and discuss the influence of microstructure controlled by deformation and heat treatment on the fatigue damage mechanism. The effects of characteristic parameters such as orientation, content, size and distribution of α phase in bimodal and full lamellar microstructures on the deformation behavior and damage mode during the initiation and propagation stages of fatigue cracks are specifically concerned. Additionally, we focus on fatigue strengthening processes of ultra-high strength titanium alloys and provide prospects for future research on fatigue of ultra-high strength titanium alloys.
-
[1] KOLLI R P, DEVARAJ A. A review of metastable beta titanium alloys[J]. Metals, 2018, 8(7):506. [2] COTTON J D, BRIGGS R D, BOYER R R, et al. State of the art in beta titanium alloys for airframe applications[J]. JOM, 2015, 67(6):1281-1303. [3] 张崇乐,包翔云,张金钰,等.亚稳态β钛合金的成分设计、变形机制与力学性能研究进展[J].稀有金属材料与工程, 2021, 50(2):717-724. [4] 张新全,李金山,陶曼飞,等.新型高强亚稳β钛合金电子束焊接接头组织与力学性能[J].铸造技术, 2023, 44(5):411-418. [5] SHI X H, ZENG W D, XUE S K, et al. The crack initiation behavior and the fatigue limit of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy with basket-weave microstructure[J]. Journal of Alloys and Compounds, 2015, 631:340-349. [6] ZOU C L, PANG J C, QIU Y, et al. The high-cycle fatigue fracture mechanism and fatigue strength prediction of compacted graphite iron[J]. International Journal of Fatigue, 2022, 161:106881. [7] PANG J C, LI S X, WANG Z G, et al. Relations between fatigue strength and other mechanical properties of metallic materials[J]. Fatigue&Fracture of Engineering Materials&Structures, 2014, 37(9):958-976. [8] SCHüTZ W. A history of fatigue[J]. Engineering Fracture Mechanics, 1996, 54(2):263-300. [9] 黄文俊,喻溅鉴,张晓英,等.直升机旋翼钛合金桨毂中央件失效分析及制造技术[J].航空制造技术, 2010, 53(20):68-72. [10] 艾剑波,李满福,覃海鹰,等.某型直升机Ti1023钛合金中央件提前疲劳破坏原因分析[J].直升机技术, 2008(4):33-36. [11] CHAN K S, LEE Y D. Effects of deformation-induced constraint on high-cycle fatigue in Ti alloys with a duplex microstructure[J]. Metallurgical and Materials Transactions A, 2008, 39(7):1665-1675. [12] ZHANG Z, HUANG C W, XU Z L, et al. Influence of Notch root radius on high cycle fatigue properties and fatigue crack initiation behavior of Ti-55531 alloy with a multilevel lamellar microstructure[J]. Journal of Materials Research and Technology, 2023, 24:6293-6311. [13] LI W, XING X X, GAO N, et al. Subsurface facets-induced crack nucleation behavior and microstructure based strength evaluation of titanium alloys in ultra long life regime[J]. Materials Science and Engineering:A, 2019, 761:138055. [14] TAN C S, LI X L, SUN Q Y, et al. Effect of α-phase morphology on low-cycle fatigue behavior of TC21 alloy[J]. International Journal of Fatigue, 2015, 75:1-9. [15] 张赛飞. TC17钛合金三种典型组织的疲劳与断裂性能研究[D].西安:西北工业大学, 2017. [16] JONES I P, HUTCHINSON W B. Stress-state dependence of slip in Titanium-6Al-4V and other H.C.P. metals[J]. Acta Metallurgica, 1981, 29(6):951-968. [17] BRIDIER F, VILLECHAISE P, MENDEZ J. Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic texture on different scales[J]. Acta Materialia, 2008, 56(15):3951-3962. [18] LUQUIAU D, FEAUGAS X, CLAVEL M. Cyclic softening of the Ti-10V-2Fe-3Al titanium alloy[J]. Materials Science and Engineering:A, 1997, 224(1-2):146-156. [19] HUANG J, WANG Z R, XUE K M. Cyclic deforma-tion response and micromechanisms of Ti alloy Ti-5Al-5V-5Mo-3Cr-0.5Fe[J]. Materials Science and Engineering:A, 2011, 528(29-30):8723-8732. [20] HUANG C W, ZHAO Y Q, XIN S W, et al. High cycle fatigue behavior of Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy with bimodal microstructure[J]. Journal of Alloys and Compounds, 2017, 695:1966-1975. [21] LIU F L, PENG H T, LIU Y J, et al. Crack initiation mechanism of titanium alloy in very high cycle fatigue regime at 400℃ considering stress ratio effect[J]. International Journal of Fatigue, 2022, 163:107012. [22] WU Z H, KOU H C, CHEN N N, et al. The effects of grain morphology and crystallographic orientation on fatigue crack initiation in a metastable β titanium alloy Ti-7333[J]. Materials Science and Engineering:A, 2020, 798:140222. [23] LIU C H, XU X, SUN T Z, et al. Microstructural effects on fatigue crack initiation mechanisms in a near-alpha titanium alloy[J]. Acta Materialia, 2023, 253:118957. [24] HUANG C W, ZHAO Y Q, XIN S W, et al. Effect of microstructure on tensile properties of Ti-5Al-5Mo-5V-3Cr-1Zr alloy[J]. Journal of Alloys and Compounds, 2017, 693:582-591. [25] JHA S K, RAVI CHANDRAN K S. An unusual fat-igue phenomenon:duality of the S-N fatigue curve in the β-titanium alloy Ti-10V-2Fe-3Al[J]. Scripta Materialia, 2003, 48(8):1207-1212. [26] JHA S K, SZCZEPANSKI C J, GOLDEN P J, et al. Characterization of fatigue crack-initiation facets in relation to lifetime variability in Ti-6Al-4V[J]. International Journal of Fatigue, 2012, 42:248-257. [27] LAVOGIEZ C, HÉMERY S, VILLECHAISE P. On the mechanism of fatigue and dwell-fatigue crack initiation in Ti-6Al-4V[J]. Scripta Materialia, 2020, 183:117-121. [28] 许亚利,吴小文,赖敏杰,等.钛合金变形织构及其影响研究进展[J].铸造技术, 2022, 43(12):1021-1031. [29] BANTOUNAS I, DYE D, LINDLEY T C. The role of microtexture on the faceted fracture morphology in Ti-6Al-4V subjected to high-cycle fatigue[J]. Acta Materialia, 2010, 58(11):3908-3918. [30] NAYDENKIN E V, MISHIN I P, RATOCHKA I V, et al. Fatigue and fracture behavior of ultrafine-grained near β titanium alloy produced by radial shear rolling and subsequent aging[J]. Materials Science and Engineering:A, 2021, 810:140968. [31] HALL J A. Fatigue crack initiation in alpha-beta titanium alloys[J]. International Journal of Fatigue, 1997, 19(93):23-37. [32] PETERS J O, LÜTJERING G. Comparison of the fatigue and fracture of α+β and β titanium alloys[J]. Metallurgical and Materials Transactions A, 2001, 32(11):2805-2818. [33] 李强.高强β钛合金热处理工艺优化及疲劳性能研究[D].西安:西安建筑科技大学, 2018. [34] HUANG C W, ZHAO Y Q, XIN S W, et al. High cycle fatigue behavior of Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy with lamellar microstructure[J]. Materials Science and Engineering:A, 2017, 682:107-116. [35] RUPPEN J A, EYLON D, MCEVILY A J. Sub-surface fatigue crack initiation ofβ-annealed Ti-6Al-4V[J]. Metallurgical Transactions A, 1980, 11(6):1072-1075. [36] WU G Q, SHI C L, SHA W, et al. Microstructure and high cycle fatigue fracture surface of a Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy[J]. Materials Science and Engineering:A, 2013, 575:111-118. [37] LÜTJERING G, ALBRECHT J, SAUER C, et al. The influence of soft, precipitate-free zones at grain boundaries in Ti and Al alloys on their fatigue and fracture behavior[J]. Materials Science and Engineering:A, 2007, 468-470:201-209. [38] SCHMIDT P, EL-CHAIKH A, CHRIST H J. Effect of duplex aging on the initiation and propagation of fatigue cracks in the solute-rich metastable β titanium alloy Ti38-644[J]. Metallurgical and Materials Transactions A, 2011, 42(9):2652-2667. [39] KOKUOZ B Y, RACK H J, KOSAKA Y. High-cycle fatigue crack initiation and growth in TIMETAL LCB[J]. Journal of Materials Engineering and Performance, 2005, 14(6):773-777. [40] XUE G G, NAKAMURA T, FUJIMURA N, et al. Initiation and propagation processes of internal fatigue cracks in β titanium alloy based on fractographic analysis[J]. Applied Sciences, 2020, 11(1):131. [41] WU Z H, KOU H C, CHEN N N, et al. The effect of cubic-texture on fatigue cracking in a metastable β titanium alloy subjected to high-cycle fatigue[J]. International Journal of Fatigue, 2020, 141:105872. [42] 石晓辉.网篮组织TC18钛合金损伤容限性能及高周疲劳强度研究[D].西安:西北工业大学, 2016. [43] HUANG C W, ZHAO Y Q, XIN S W, et al. Effect of microstructure on high cycle fatigue behavior of Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy[J]. International Journal of Fatigue, 2017, 94:30-40. [44] HUANG Z Y, LIU H Q, WANG H M, et al. Effect of stress ratio on VHCF behavior for a compressor blade titanium alloy[J]. International Journal of Fatigue, 2016, 93:232-237. [45] RAVI K S, JHA S K. Duality of the S-N fatigue cur-ve caused by competing failure modes in a titanium alloy and the role of Poisson defect statistics[J]. Acta Materialia, 2005, 53(7):1867-1881. [46] JHA S K, SZCZEPANSKI C J, JOHN R, et al. Deformation heterogeneities and their role in life-limiting fatigue failures in a two-phase titanium alloy[J]. Acta Materialia, 2015, 82:378-395. [47] COTTON J D, CLARK L P, PHELPS H R. Titanium investiment casting defects:a metallographic overview[J]. JOM, 2006, 58(6):13-16. [48] 任永明,林鑫,黄卫东.增材制造Ti-6Al-4V合金组织及疲劳性能研究进展[J].稀有金属材料与工程, 2017, 46(10):3160-3168. [49] LIU F L, HE C, CHEN Y, et al. Effects of defects on tensile and fatigue behaviors of selective laser melted titanium alloy in very high cycle regime[J]. International Journal of Fatigue, 2020, 140:105795. [50] FATEMI A, MOLAEI R, SHARIFIMEHR S, et al. Multiaxial fatigue behavior of wrought and additive manufactured Ti-6Al-4V including surface finish effect[J]. International Journal of Fatigue, 2017, 100:347-366. [51] SZCZEPANSKI C J, JHA S K, LARSEN J M, et al. Microstructural influences on very-high-cycle fati-gue-crack initiation in Ti-6246[J]. Metallurgical and Materials Transactions A, 2008, 39(12):2841-2851. [52] LE BIAVANT K, POMMIER S, PRIOUL C. Local texture and fatigue crack initiation in a Ti-6Al-4V titanium alloy[J]. Fatigue&Fracture of Engineering Materials&Structures, 2002, 25(6):527-545. [53] ZENG W D, ZHOU Y G, YU H Q. Effect of beta fle-cks on low-cycle fatigue properties of Ti-10V-2Fe-3Al[J]. Journal of Materials Engineering and Performance, 2000, 9(2):222-227. [54] NI Y, ZHOU C W. Influence of Surface Defect on the High Cycle Fatigue behavior of TB6 Titanium Alloy[J]. Physics of Metals and Metallography, 2021, 122(10):991-999. [55] CHI W Q, WANG W J, XU W, et al. Effects of defects on fatigue behavior of TC17 titanium alloy for compressor blades:crack initiation and modeling of fatigue strength[J]. Engineering Fracture Mechanics, 2022, 259:108136. [56] 李金山,唐斌,樊江昆,等.高强亚稳β钛合金变形机制及其组织调控方法[J].金属学报, 2021, 57(11):1438-1454. [57] BOYER R R, RACK H J, VENKATESH V. The influence of thermomechanical processing on the smooth fatigue properties of Ti-15V-3Cr-3Al-3Sn[J]. Materials Science and Engineering:A, 1998, 243(1-2):97-102. [58] TAN C S, SUN Q Y, ZHANG G J, et al. High-cycle fatigue of a titanium alloy:the role of microstructure in slip irreversibility and crack initiation[J]. Journal of Materials Science, 2020, 55(26):12476-12487. [59] JHA S K, RAVICHANDRAN K S. High-cycle fatigue resistance in beta-titanium alloys[J]. JOM, 2000, 52(3):30-35. [60] CAMPANELLI L C, DA SILVA P S C P, BOLFA-RINI C. High cycle fatigue and fracture behavior of Ti-5Al-5Mo-5V-3Cr alloy with BASCA and double aging treatments[J]. Materials Science and Engineering:A, 2016, 658:203-209. [61] 乔生儒,张程煜,王泓.材料的力学性能[M].西安:西北工业大学出版社, 2015:163-166. [62] KOCAN M, WAGNER L, RACK H J. Fatigue performance of metastable β titanium alloys:effects of microstructure and surface finish[J]. Journal of Materials Engineering and Performance, 2005, 14(6):765-772. [63] CHAPETTI M. Static strengthening and fatigue blunt-notch sensitivity in low-carbon steels[J]. International Journal of Fatigue, 2001, 23(3):207-214. [64] DRECHSLER A, DÖRR T, WAGNER L. Mechanical surface treatments on Ti-10V-2Fe-3Al for improved fatigue resistance[J]. Materials Science and Engineering:A, 1998, 243(1-2):217-220. [65] BANTOUNAS I, DYE D, LINDLEY T C. The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti-6Al-4V[J]. Acta Materialia, 2009, 57(12):3584-3595. [66] XU Z L, HUANG C W, WAN M P, et al. Influence of microstructure on strain controlled low cycle fatigue crack initiation and propagation of Ti-55531 alloy[J]. International Journal of Fatigue, 2022, 156:106678. [67] DEMULSANT X, MENDEZ J. Microstructural effects on small fatigue crack initiation and growth in ti6al4v alloys[J]. Fatigue&Fracture of Engineering Materials&Structures, 1995, 18(12):1483-1497. [68] 许良,黄双君,回丽,等. TB6钛合金疲劳小裂纹扩展行为[J].材料工程, 2019, 47(11):171-177. [69] 刘新灵,张峥,陶春虎.疲劳断口定量分析[M].北京:国防工业出版社, 2010:18-19, 24-29. [70] 钟群鹏,赵子华.断口学[M].北京:高等教育出版社, 2006:252-258. [71] LI Z Y, LIU X L, WU G Q, et al. Fretting fatigue behavior of Ti-6Al-4V and Ti-10V-2Fe-3Al alloys[J]. Metals and Materials International, 2019, 25(1):64-70. [72] PILCHAK A L. Fatigue crack growth rates in alpha titanium:Faceted vs. striation growth[J]. Scripta Materialia, 2013, 68(5):277-280. [73] WANG K, BAO R, JIANG B, et al. Effect of primary α phase on the fatigue crack path of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J]. International Journal of Fatigue, 2018, 116:535-542. [74] 吴帮炜.显微组织对TC4钛合金断裂韧性与疲劳裂纹扩展速率的影响[D].沈阳:东北大学, 2018. [75] JHA S K, RAVICHANDRAN K S. Effect of mean st-ress (stress ratio) and aging on fatigue-crack growth in a metastable beta titanium alloy, Ti-10V-2Fe-3Al[J]. Metallurgical and Materials Transactions A, 2000, 31(3):703-714. [76] DUERIG T W, ALLISON J E, WILLIAMS J C. Microstructural influences on fatigue crack propagation in Ti-10V-2Fe-3Al[J]. Metallurgical Transactions A, 1985, 16(5):739-751. [77] BENEDETTI M, FONTANARI V, LÜTJERING G, et al. The effect of Notch plasticity on the behaviour of fatigue cracks emanating from edge-notches in high-strength β-titanium alloys[J]. Engineering Fracture Mechanics, 2008, 75(2):169-187. [78] XUE G G, NAKAMURA T, FUJIMURA N, et al. Initiation and propagation of small fatigue crack in beta titanium alloy observed through synchrotron radiation multiscale computed tomography[J]. Engineering Fracture Mechanics, 2022, 263:108308. [79] 郭萍. TC4-DT钛合金损伤行为研究[D].西安:西北工业大学, 2015. [80] 王美姣,孟祥军,廖志谦,等. Ti-1023合金的研究现状[J].材料开发与应用, 2009, 24(5):66-69. [81] BOYER R R, BRIGGS R D. The use of β titanium alloys in the aerospace industry[J]. Journal of Materials Engineering and Performance, 2005, 14(6):681-685. [82] 杨胜强,李永刚,李文辉.航空钛合金抗疲劳表面改性技术研究进展[J].航空制造技术, 2017, 60(13):28-35. [83] 高玉魁.喷丸对Ti-10V-2Fe-3Al钛合金拉拉疲劳性能的影响[J].中国有色金属学报, 2004, 14(1):60-63. [84] 尹小乐.钛合金表面超声滚压强化工艺优化及其腐蚀、疲劳行为研究[D].南昌:南昌航空大学, 2021. [85] 罗学昆,赵春玲,查小晖,等.喷丸对TB6钛合金疲劳应力集中敏感性的影响[J].材料导报, 2021, 35(12):12114-12118. [86] 徐松超,盖鹏涛,付雪松,等.干、湿喷丸强化对TC17钛合金喷丸强化层的影响[J].表面技术, 2021, 50(9):91-98. [87] 罗学昆,赵春玲,查小辉,等.激光冲击、喷丸及其复合强化对TB6钛合金表面完整性及轴向疲劳性能的影响[J].科技导报, 2021, 39(9):48-55. [88] BERGER M C, GREGORY J K. Residual stress relaxation in shot peened Timetal 21s[J]. Materials Science and Engineering:A, 1999, 263(2):200-204. [89] ZHANG D H, SHI D P, WANG F, et al. Electromagnetic shocking induced fatigue improvement via tailoring the α-grain boundary in metastable β titanium alloy bolts[J]. Journal of Alloys and Compounds, 2023, 966:171536.
点击查看大图
计量
- 文章访问数: 91
- HTML全文浏览量: 8
- PDF下载量: 45
- 被引次数: 0