留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于颗粒阻尼的水下吸声构件结构设计与性能研究

郑嘉琦 杜佳伟 胡旭 王云明 周华民

郑嘉琦, 杜佳伟, 胡旭, 王云明, 周华民. 基于颗粒阻尼的水下吸声构件结构设计与性能研究[J]. 材料开发与应用, 2023, 38(4): 11-18.
引用本文: 郑嘉琦, 杜佳伟, 胡旭, 王云明, 周华民. 基于颗粒阻尼的水下吸声构件结构设计与性能研究[J]. 材料开发与应用, 2023, 38(4): 11-18.
ZHENG Jiaqi, DU Jiawei, HU Xu, WANG Yunming, ZHOU Huamin. Structure Design and Performance Investigation of Underwater Sound Adsorption Components Based on Particle Damping[J]. Development and Application of Materials, 2023, 38(4): 11-18.
Citation: ZHENG Jiaqi, DU Jiawei, HU Xu, WANG Yunming, ZHOU Huamin. Structure Design and Performance Investigation of Underwater Sound Adsorption Components Based on Particle Damping[J]. Development and Application of Materials, 2023, 38(4): 11-18.

基于颗粒阻尼的水下吸声构件结构设计与性能研究

基金项目: 

国家自然科学基金面上项目(52075196)

详细信息
    作者简介:

    郑嘉琦,博士,主要研究方向为振动与噪声感知与控制技术。E-mail:jq_zheng@hust.edu.cn

    通讯作者:

    王云明,博士,教授,博士生导师,主要研究方向为功能聚合物器件成形。E-mail:wang653@hust.edu.cn

  • 中图分类号: O427

Structure Design and Performance Investigation of Underwater Sound Adsorption Components Based on Particle Damping

  • 摘要: 现代声呐探测技术的提高对水下吸声构件在低频声波的吸收性能提出了新的要求,而现有基于空腔、颗粒散射、声子晶体等结构的水下构件仍难以达到良好的吸声效果。针对以上需求,本研究设计了基于颗粒阻尼结构的水下吸声构件,通过在水下吸声阻尼聚合物中加入颗粒阻尼单元高效耗散机械能。通过离散元模型计算出颗粒材质、填充率、尺寸等参数对于单元耗散能量的影响,并进一步探究了颗粒阻尼单元在声激励下的运动规律与能量耗散效果,对于改进水下吸声构件以及提升其吸声效果提供一种参考。

     

  • [1] GAO N S, LU K. An underwater metamaterial for broadband acoustic absorption at low frequency[J]. Applied Acoustics, 2020, 169:107500.
    [2] WANG Z H, HUANG Y X, ZHANG X W, et al. Broadband underwater sound absorbing structure with gradient cavity shaped polyurethane composite array supported by carbon fiber honeycomb[J]. Journal of Sound and Vibration, 2020, 479:115375.
    [3] LEE T, IIZUKA H. Heavily overdamped resonance structurally engineered in a grating metasurface for ultra-broadband acoustic absorption[J]. Applied Physics Letters, 2018, 113(10):101903.
    [4] SOHRABI S H, KETABDARI M J. Stochastic mo-deling and sensitivity analysis of underwater sound absorber rubber coating[J]. Applied Acoustics, 2020, 164:107282.
    [5] LI Y, XU F, LIN Z S, et al. Electrically and therm-ally conductive underwater acoustically absorptive gr-aphene/rubber nanocomposites for multifunctional applications[J]. Nanoscale, 2017, 9(38):14476-14485.
    [6] LI L, ZHANG Z F, HUANG Q B, et al. A sandwich anechoic coating embedded with a micro-perforated p-anel in high-viscosity condition for underwater sound absorption[J]. Composite Structures, 2020, 235:111761.
    [7] ZHANG Z F, HUANG Y Z, HUANG Q B. Lowfreq-uency broadband absorption of underwater composite anechoic coating with periodic subwavelength arrays of shunted piezoelectric patches[J]. Composite Structures, 2019, 216:449-463.
    [8] ZHAO C Y, SHI D J, ZHENG J Y, et al. New floating slab track isolator for vibration reduction using particle damping vibration absorption and bandgap vibration resistance[J]. Construction and Building Materials, 2022, 336:127561.
    [9] SANDANSHIV S R, CHAVAN U S. Vibration suppression effects on rotating wind turbine blade using a particle damping method[J]. Vibroengineering PROCEDIA, 2019, 29:43-48.
    [10] 田佳彬, 黄自杰, 王娟, 等. 基于粒子阻尼器的船舶推进轴系减振研究[J]. 振动与冲击, 2022, 41(24):97-103.
    [11] XIAO W Q, LU D J, SONG L M, et al. Influence of particle damping on ride comfort of mining dump truck[J]. Mechanical Systems and Signal Processing, 2020, 136:106509.
    [12] PANOSSIAN H V. Structural damping enhancement via non-obstructive particle damping technique[J]. Journal of Vibration and Acoustics, 1992, 114(1):101-105.
    [13] PENDLETON S, BASILE J, GUERRA J, et al. Particle damping for launch vibration mitigation:design and test validation[C]//Proceedings of the 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structur-al Dynamics, and Materials Conference. Schaumburg:AIAA, 2008:2008-2027.
    [14] JADHAV T A, AWASARE P J. Enhancement of particle damping effectiveness using multiple cell enclosure[J]. Journal of Vibration and Control, 2016, 22(6):1516-1525.
    [15] XIAO W Q, XU Z H, ZHANG F B, et al. Effect of particle damping on high-power gear transmission with dynamic coupling for continuum and non-continuum[J]. Applied Acoustics, 2021, 173:107724.
    [16] MEYER N, SEIFRIED R. Systematic design of pa-rticle dampers for transient vertical vibrations[J]. Granular Matter, 2022, 25(1):1-17.
  • 加载中
计量
  • 文章访问数:  64
  • HTML全文浏览量:  13
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-29
  • 网络出版日期:  2023-09-13

目录

    /

    返回文章
    返回