留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增材制造不同微-纳粒径比B4C增强TC4复合材料组织及性能研究

张文书 魏晨 李兵 任勇 闵金 常辉 周廉

张文书, 魏晨, 李兵, 任勇, 闵金, 常辉, 周廉. 增材制造不同微-纳粒径比B4C增强TC4复合材料组织及性能研究[J]. 材料开发与应用, 2024, 39(4): 10-17.
引用本文: 张文书, 魏晨, 李兵, 任勇, 闵金, 常辉, 周廉. 增材制造不同微-纳粒径比B4C增强TC4复合材料组织及性能研究[J]. 材料开发与应用, 2024, 39(4): 10-17.
ZHANG Wenshu, WEI Chen, LI Bing, REN Yong, MIN Jin, CHANG Hui, ZHOU Lian. Microstructure and Properties of Laser Direct Manufacturing TC4 Alloy Reinforced by B4C with Different Micro/Nano Particle Ratios[J]. Development and Application of Materials, 2024, 39(4): 10-17.
Citation: ZHANG Wenshu, WEI Chen, LI Bing, REN Yong, MIN Jin, CHANG Hui, ZHOU Lian. Microstructure and Properties of Laser Direct Manufacturing TC4 Alloy Reinforced by B4C with Different Micro/Nano Particle Ratios[J]. Development and Application of Materials, 2024, 39(4): 10-17.

增材制造不同微-纳粒径比B4C增强TC4复合材料组织及性能研究

基金项目: 

国家自然科学基金面上项目(5207050258)

详细信息
    作者简介:

    张文书,男,1988年生,博士,助理研究员,主要研究方向:钛基复合材料制备及增材制造技术。E-mail:wenshu@njtech.edu.cn

  • 中图分类号: TG146.23

Microstructure and Properties of Laser Direct Manufacturing TC4 Alloy Reinforced by B4C with Different Micro/Nano Particle Ratios

  • 摘要: 采用直接激光沉积(LDM)工艺在TC4钛合金表面成功制备含有3%(质量分数) B4C增强的B4C/TC4复合材料。分别选用粒径50 μm和50 nm的B4C颗粒与TC4粉末进行机械混粉,并完成LDM成型,对比测试了微米级B4C增强颗粒与纳米级B4C增强颗粒质量分数比值分别为1%∶2%、1.5%∶1.5%、2%∶1%的3种具有不同微-纳B4C增强颗粒比例样品的显微组织和界面处显微硬度。研究结果表明,添加B4C增强相后,材料的显微组织明显细化,不同尺度B4C增强颗粒含量能够对第二相TiB与TiC的结晶度以及晶粒尺寸产生影响,纳米B4C较多时,样品中的TiC结晶度较好,TiB以纳米颗粒镶嵌在TC4晶体中。当微-纳B4C比例相近时,TC4基体硬度最高,样品内部的TiB具有较高的结晶度与较大的晶粒尺寸,同时第二相区域内的TiB与TiC的硬度也最高。

     

  • [1] WEI C B, MA X L, YANG X J, et al. Microstruc-tural and property evolution of Ti6Al4V powders with the number of usage in additive manufacturing by electron beam melting[J]. Materials Letters, 2018, 221:111-114.
    [2] HAMZA H M, DEEN K M, HAIDER W. Microst-ructural examination and corrosion behavior of selective laser melted and conventionally manufac-tured Ti6Al4V for dental applications[J]. Materials Science and Engineering:C, 2020, 113:110980.
    [3] QIAO S C, SHENG Q B, LI Z H, et al. 3D-printed Ti6Al4V scaffolds coated with freeze-dried platelet-rich plasma as bioactive interface for enhancing osseointegration in osteoporosis[J]. Materials&Design, 2020, 194:108825.
    [4] BARTOLOMEU F, COSTA M M, ALVES N, et al. Additive manufacturing of NiTi-Ti6Al4V multi-material cellular structures targeting orthopedic implants[J]. Optics and Lasers in Engineering, 2020, 134:106208.
    [5] GARBOCZI E J, HRABE N. Particle shape and size analysis for metal powders used for additive manufacturing:technique description and application to two gas-atomized and plasma-atomized Ti64 powders[J]. Additive Manufacturing, 2020, 31:100965.
    [6] YAN T Q, CHEN B Q, JI X, et al. Influence of hot isostatic pressing on microstructure, properties and deformability of selective laser melting TC4 alloy[J]. China Foundry, 2021, 18(4):389-396.
    [7] ROUDNICKA M, MERTOVA K, VOJTECH D. Influence of hot isostatic pressing on mechanical response of as-built SLM titanium alloy[J]. IOP Conference Series:Materials Science and Engineering, 2019, 629(1):012034.
    [8] QI C Q, DU Y, YANG P, et al. Influence of heat treatment on microstructure and mechanical properties of TC4 fabricated by laser melting deposition[J]. Metals and Materials International, 2022, 28(12):3068-3079.
    [9] JABER H, KÓNYA J, KULCSÁR K, et al. Effects of annealing and solution treatments on the microstructure and mechanical properties of Ti6Al4V manufactured by selective laser melting[J]. Materials, 2022, 15(5):1978.
    [10] HAYAT M D, SINGH H, HE Z, et al. Titanium metal matrix composites:an overview[J]. Composites Part A:Applied Science and Manufacturing, 2019, 121:418-438.
    [11] ZENG Y Z, WANG J D, LIU X R, et al. Laser additive manufacturing of ceramic reinforced titanium matrix composites:a review of microstructure, properties, auxiliary processes, and simulations[J]. Composites Part A:Applied Science and Manufacturing, 2024, 177:107941.
    [12] BRICE D A, SAMIMI P, GHAMARIAN I, et al. Oxidation behavior and microstructural decomposition of Ti-6Al-4V and Ti-6Al-4V-1B sheet[J]. Corrosion Science, 2016, 112:338-346.
    [13] MENG X, MIN J, SUN Z G, et al. Columnar to equiaxed grain transition of laser deposited Ti6Al4V using nano-sized B4C particles[J]. Composites Part B:Engineering, 2021, 212:108667.
  • 加载中
计量
  • 文章访问数:  17
  • HTML全文浏览量:  5
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-28
  • 网络出版日期:  2024-09-12

目录

    /

    返回文章
    返回