留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退火温度对高纯钛冷轧薄板组织和力学性能的影响

常赛鹏 王丙兴 焦晶晶 田勇 王斌

常赛鹏, 王丙兴, 焦晶晶, 田勇, 王斌. 退火温度对高纯钛冷轧薄板组织和力学性能的影响[J]. 材料开发与应用, 2024, 39(4): 45-52.
引用本文: 常赛鹏, 王丙兴, 焦晶晶, 田勇, 王斌. 退火温度对高纯钛冷轧薄板组织和力学性能的影响[J]. 材料开发与应用, 2024, 39(4): 45-52.
CHANG Saipeng, WANG Bingxing, JIAO Jingjing, TIAN Yong, WANG Bin. Effect of Annealing Temperature on Microstructure and Mechanical Property of High Purity Titanium Cold Rolled Plate[J]. Development and Application of Materials, 2024, 39(4): 45-52.
Citation: CHANG Saipeng, WANG Bingxing, JIAO Jingjing, TIAN Yong, WANG Bin. Effect of Annealing Temperature on Microstructure and Mechanical Property of High Purity Titanium Cold Rolled Plate[J]. Development and Application of Materials, 2024, 39(4): 45-52.

退火温度对高纯钛冷轧薄板组织和力学性能的影响

基金项目: 

东北大学轧制技术及连轧自动化国家重点实验室课题(ZZ2023005,2024A039)

详细信息
    作者简介:

    常赛鹏,男,1999生,硕士研究生,研究方向为钛合金材料的加工与热处理。E-mail:changsp100@163.com

    通讯作者:

    王丙兴,男,1979生,博士,教授,研究方向为金属材料塑性成形与热处理工艺。E-mail:wangbx@ral.nev.edu.cn

  • 中图分类号: TG166.5

Effect of Annealing Temperature on Microstructure and Mechanical Property of High Purity Titanium Cold Rolled Plate

  • 摘要: 以高纯(99.995%)钛板材为研究对象,对压下量为60%的冷轧高纯钛板材进行了不同温度的退火处理。采用 EBSD技术对高纯钛板材的显微组织进行了表征,对退火后的钛板材进行拉伸试验和硬度测试。结果表明,随着退火温度的提高,高纯钛板材的抗拉强度和硬度不断下降,而伸长率得到提高;在600 ℃下退火10 min后,板材的伸长率达到(74.6±5.0)%,抗拉强度达到(217±2) MPa。显微组织结果表明,在600 ℃下退火10 min后,晶粒已完全转变为无畸变的等轴晶,KAM值降低至0.16°,表明此时板材内部几乎不存在局部应变和储存能。这主要是因为随着退火温度的提高,晶粒的位错密度降低,软化效果增强。

     

  • [1] GEETHA M, SINGH A K, ASOKAMANI R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-a review[J]. Progress in Materials Science, 2009, 54(3):397-425.
    [2] NIINOMI M, NAKAI M, HIEDA J. Development of new metallic alloys for biomedical applications[J]. Acta Biomaterialia, 2012, 8(11):3888-3903.
    [3] KARIMI M, TOROGHINEJAD M R, DUTKIEWICZ J. Nanostructure formation during accumulative roll bonding of commercial purity titanium[J]. Materials Characterization, 2016, 122:98-103.
    [4] CHEN X, XIAO H, SHI Y M, et al. The influence of bonding time on microstructure and mechanical properties of vacuum diffusion bonded joints between commercial pure titanium and medium carbon steel[J]. Vacuum, 2023, 214:112158.
    [5] KLEVTSOV G V, VALIEV R Z, KLEVTSOVA N A, et al. Strength and fracture mechanism of an ultrafi-negrained austenitic steel for medical applications[J]. Materials, 2021, 14(24):7739.
    [6] KAZEMZADEH-NARBAT M, LAI B F, DING C F, et al. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections[J]. Biomaterials, 2013, 34(24):5969-5977.
    [7] ISLAMGALIEV R K, KAZYHANOV V U, SHESTAKOVA L O, et al. Microstructure and mechanical properties of titanium (Grade 4) processed by high-pressure torsion[J]. Materials Science and Engineering:A, 2008, 493(1-2):190-194.
    [8] TERADA D, INOUE S, TSUJI N. Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process[J]. Journal of Materials Science, 2007, 42(5):1673-1681.
    [9] ZHANG F, FENG J, XIANG W, et al. Microstruc-ture evolution, grain refinement, and mechanical properties of a metastable β titanium alloy during cold rolling and recrystallization annealing[J]. Materials Characterization, 2024, 208:113632.
    [10] GU Y X, MA A B, JIANG J H, et al. Simultaneously improving mechanical properties and corrosion resistance of pure Ti by continuous ECAP plus short-duration annealing[J]. Materials Characterization, 2018, 138:38-47.
    [11] BRITTON T B, LIANG H, DUNNE F P E, et al. The effect of crystal orientation on the indentation response of commercially pure titanium:experiments and simulations[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2010, 466(2115):695-719.
    [12] 郭庆,余伟,韩盈,等.压下率对冷轧及退火纯钛板材织构的影响[J].钛工业进展, 2022, 39(4):6-11.
    [13] 张鹏飞.密排六方结构金属基面双峰织构的形成及演化机制研究[D].重庆:重庆大学, 2021.
    [14] 毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社, 1994.
    [15] 赵鹏程.温度及应力诱发超细晶工业纯钛再结晶与晶粒长大的机理研究[D].上海:华东理工大学, 2020.
    [16] WU G C, LI S Y, LI J H, et al. Texture evolution during multi-pass cold rolling and annealing of Ti-2Al-1.5Mn alloy[J]. Journal of Alloys and Compounds, 2024, 971:172705.
    [17] ZHAO S, WANG Y, PENG L, et al. Effect of annealing temperature on microstructure and mechanical properties of cold-rolled commercially pure titanium sheets[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(8):2587-2597.
    [18] WANG Y N, HUANG J C. Texture analysis in hexagonal materials[J]. Materials Chemistry and Physics, 2003, 81(1):11-26.
    [19] LUNT D, XU X, BUSOLO T, et al. Quantification of strain localisation in a bimodal two-phase titanium alloy[J]. Scripta Materialia, 2018, 145:45-49.
    [20] CHOI S W, LI C L, WON J W, et al. Deformation heterogeneity and its effect on recrystallization behavior in commercially pure titanium:comparative study on initial microstructures[J]. Materials Science and Engineering:A, 2019, 764:138211.
    [21] XU T F, WANG S Y, WANG W C, et al. Multimodal grain structure and tensile properties of cold-rolled titanium after short-duration annealing[J]. Materials Characterization, 2020, 160:110095.
    [22] ZHANG K, LIU X, FAN P, et al. Characterization of geometrically necessary dislocation evolution during creep of P91 steel using electron backscatter diffrac-tion[J]. Materials Characterization, 2023, 195.
  • 加载中
计量
  • 文章访问数:  17
  • HTML全文浏览量:  3
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-05
  • 网络出版日期:  2024-09-12

目录

    /

    返回文章
    返回