Effect of Annealing Temperature on Microstructure and Mechanical Property of High Purity Titanium Cold Rolled Plate
-
摘要: 以高纯(99.995%)钛板材为研究对象,对压下量为60%的冷轧高纯钛板材进行了不同温度的退火处理。采用 EBSD技术对高纯钛板材的显微组织进行了表征,对退火后的钛板材进行拉伸试验和硬度测试。结果表明,随着退火温度的提高,高纯钛板材的抗拉强度和硬度不断下降,而伸长率得到提高;在600 ℃下退火10 min后,板材的伸长率达到(74.6±5.0)%,抗拉强度达到(217±2) MPa。显微组织结果表明,在600 ℃下退火10 min后,晶粒已完全转变为无畸变的等轴晶,KAM值降低至0.16°,表明此时板材内部几乎不存在局部应变和储存能。这主要是因为随着退火温度的提高,晶粒的位错密度降低,软化效果增强。Abstract: The cold rolled high purity (99.995%) titanium plate with 60% reduction is annealed at different temperatures. The microstructure of the high-purity titanium plate is characterized by EBSD technology, and the tensile and hardness tests are carried out. The results show that with the increase of annealing temperature, the tensile strength and hardness of the high-purity titanium plate decrease continuously, and the elongation increases. After annealing at 600 ℃ for 10 minutes, the elongation of the plate reaches (74.6±5.0)%, and the tensile strength reaches (217±2) MPa. The microstructure shows that the grains have been completely transformed into equiaxed grains without distortion after being annealed at 600 ℃ for 10 minutes, and that the KAM value is reduced to 0.16°, indicating that there is almost no local strain and stored energy in the plate at this moment. The reason is that with the increase of annealing temperature, the dislocation density of the grain decreases, and the softening effect increases.
-
Key words:
- high purity titanium /
- recrystallization nucleation /
- texture /
- mechanical property /
- KAM
-
[1] GEETHA M, SINGH A K, ASOKAMANI R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-a review[J]. Progress in Materials Science, 2009, 54(3):397-425. [2] NIINOMI M, NAKAI M, HIEDA J. Development of new metallic alloys for biomedical applications[J]. Acta Biomaterialia, 2012, 8(11):3888-3903. [3] KARIMI M, TOROGHINEJAD M R, DUTKIEWICZ J. Nanostructure formation during accumulative roll bonding of commercial purity titanium[J]. Materials Characterization, 2016, 122:98-103. [4] CHEN X, XIAO H, SHI Y M, et al. The influence of bonding time on microstructure and mechanical properties of vacuum diffusion bonded joints between commercial pure titanium and medium carbon steel[J]. Vacuum, 2023, 214:112158. [5] KLEVTSOV G V, VALIEV R Z, KLEVTSOVA N A, et al. Strength and fracture mechanism of an ultrafi-negrained austenitic steel for medical applications[J]. Materials, 2021, 14(24):7739. [6] KAZEMZADEH-NARBAT M, LAI B F, DING C F, et al. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections[J]. Biomaterials, 2013, 34(24):5969-5977. [7] ISLAMGALIEV R K, KAZYHANOV V U, SHESTAKOVA L O, et al. Microstructure and mechanical properties of titanium (Grade 4) processed by high-pressure torsion[J]. Materials Science and Engineering:A, 2008, 493(1-2):190-194. [8] TERADA D, INOUE S, TSUJI N. Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process[J]. Journal of Materials Science, 2007, 42(5):1673-1681. [9] ZHANG F, FENG J, XIANG W, et al. Microstruc-ture evolution, grain refinement, and mechanical properties of a metastable β titanium alloy during cold rolling and recrystallization annealing[J]. Materials Characterization, 2024, 208:113632. [10] GU Y X, MA A B, JIANG J H, et al. Simultaneously improving mechanical properties and corrosion resistance of pure Ti by continuous ECAP plus short-duration annealing[J]. Materials Characterization, 2018, 138:38-47. [11] BRITTON T B, LIANG H, DUNNE F P E, et al. The effect of crystal orientation on the indentation response of commercially pure titanium:experiments and simulations[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2010, 466(2115):695-719. [12] 郭庆,余伟,韩盈,等.压下率对冷轧及退火纯钛板材织构的影响[J].钛工业进展, 2022, 39(4):6-11. [13] 张鹏飞.密排六方结构金属基面双峰织构的形成及演化机制研究[D].重庆:重庆大学, 2021. [14] 毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社, 1994. [15] 赵鹏程.温度及应力诱发超细晶工业纯钛再结晶与晶粒长大的机理研究[D].上海:华东理工大学, 2020. [16] WU G C, LI S Y, LI J H, et al. Texture evolution during multi-pass cold rolling and annealing of Ti-2Al-1.5Mn alloy[J]. Journal of Alloys and Compounds, 2024, 971:172705. [17] ZHAO S, WANG Y, PENG L, et al. Effect of annealing temperature on microstructure and mechanical properties of cold-rolled commercially pure titanium sheets[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(8):2587-2597. [18] WANG Y N, HUANG J C. Texture analysis in hexagonal materials[J]. Materials Chemistry and Physics, 2003, 81(1):11-26. [19] LUNT D, XU X, BUSOLO T, et al. Quantification of strain localisation in a bimodal two-phase titanium alloy[J]. Scripta Materialia, 2018, 145:45-49. [20] CHOI S W, LI C L, WON J W, et al. Deformation heterogeneity and its effect on recrystallization behavior in commercially pure titanium:comparative study on initial microstructures[J]. Materials Science and Engineering:A, 2019, 764:138211. [21] XU T F, WANG S Y, WANG W C, et al. Multimodal grain structure and tensile properties of cold-rolled titanium after short-duration annealing[J]. Materials Characterization, 2020, 160:110095. [22] ZHANG K, LIU X, FAN P, et al. Characterization of geometrically necessary dislocation evolution during creep of P91 steel using electron backscatter diffrac-tion[J]. Materials Characterization, 2023, 195.
点击查看大图
计量
- 文章访问数: 48
- HTML全文浏览量: 5
- PDF下载量: 19
- 被引次数: 0