留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

方腔内Al2O3-H2O纳米流体热毛细对流的格子Boltzmann模拟

卢巧颖

卢巧颖. 方腔内Al2O3-H2O纳米流体热毛细对流的格子Boltzmann模拟[J]. 材料开发与应用, 2021, 36(2): 1-10.
引用本文: 卢巧颖. 方腔内Al2O3-H2O纳米流体热毛细对流的格子Boltzmann模拟[J]. 材料开发与应用, 2021, 36(2): 1-10.
LU Qiaoying. Lattice Boltzmann Simulation of Thermal Marangoni Convection of Al2O3-H2O Nanofluids in Square Cavity[J]. Development and Application of Materials, 2021, 36(2): 1-10.
Citation: LU Qiaoying. Lattice Boltzmann Simulation of Thermal Marangoni Convection of Al2O3-H2O Nanofluids in Square Cavity[J]. Development and Application of Materials, 2021, 36(2): 1-10.

方腔内Al2O3-H2O纳米流体热毛细对流的格子Boltzmann模拟

详细信息
    作者简介:

    卢巧颖,女,1994年生,硕士研究生,研究方向为强化传热。E-mail:tarial@163.com

  • 中图分类号: TK124

Lattice Boltzmann Simulation of Thermal Marangoni Convection of Al2O3-H2O Nanofluids in Square Cavity

  • 摘要: 采用格子Boltzmann方法研究纳米颗粒形状影响下方腔内纳米流体热毛细对流的强化传热效果,主要分析了纳米粒子体积分数、颗粒形状以及Marangoni数Ma等相关参数对于纳米流体热毛细对流换热过程的影响。结果表明:长径比(长/半径)对纳米流体换热效果有影响,形状因子越大,平均NuNuave越大。随着体积分数的增加,棒状、盘状和正方体状纳米颗粒均使热毛细对流的Nuave数减少,球状纳米颗粒条件下热毛细对流的Nuave数增加。Ma数越大,纳米流体热毛细对流的自由表面速度越大,对流换热效果也随之增强。

     

  • [1] HWANG K S,HA H J,LEE S H,et al.Flow and convective heat transfer characteristics of nanofluids with various shapes of alumina nanoparticles[C].Florida:The Asme Second International Conference on Micro/nanoscale Heat& Mass Transfer,2009.
    [2] JEONG J,LI C,KWON Y,et al.Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids[J].International Journal of Refrigeration,2013,36(8):2233-2241.
    [3] TIMOFEEVA E V,ROUTBORT J L,SINGH D.Particle shape effects on thermophysical properties of alumina nanofluids[J].Journal of Applied Physics,2009,106(1):14304.
    [4] 蔡洋,刘方,朱威全.纳米颗粒形状对螺旋管强化传热的影响[J].上海电力学院学报,2018,34(2):127-134,140.
    [5] 田海栋,刘方,张冬翔,等.弯管内纳米流体非线性特性模拟与分析[J].上海电力学院学报,2018,34(2):135-140.
    [6] AMINFAR H,MOHAMMADPOURFARD M,MOHSENI F.Numerical investigation of thermocapillary and buoyancy driven convection of nanofluids in a floating zone[J].International Journal of Mechanical Sciences,2012,65(1):147-156.
    [7] LIN Y,LI B,ZHENG L,et al.Particle shape and radiation effects on Marangoni boundary layer flow and heat transfer of copper-water nanofluid driven by an exponential temperature[J].Powder Technology,2016,30(1):379-386.
    [8] HAYAT T,KHAN M I,FAROOQ M,et al.Impact of Marangoni convection in the flow of carbon-water nanofluid with thermal radiation[J].International Journal of Heat and Mass Transfer,2017,10(6):810-815.
    [9] MAHANTHESH B,GIREESHA B J,PRASANNAKUMARA B C,et al.Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source[J].Nuclear Engineering and Technology,2017,49(8):1660-1668.
    [10] MAHANTHESH B,GIREESHA B,PRASANNAKUMARA B,et al.Magneto-Thermo-Marangoni convective flow of Cu-H2O nanoliquid past an infinite disk with particle shape and exponential space based heat source effects[J].Results in physics,2017,7(2):990-996.
    [11] KOLSI L,LAJNEF E,AICH W,et al.Numerical investigation of combined buoyancy-thermocapillary convection and entropy generation in 3D cavity filled with Al2O3 nanofluid[J].Alexandria Engineering Journal,2017,56(1):71-79.
    [12] GUO Z,ZHAO T.Lattice Boltzmann model for incompressible flows through porous media[J].Physical Review E,2002,66(3):36304.
    [13] SRINIVASAN S,MILLER R,MAROTTA E.Parallel computation of the Boltzmann transport equation for microscale heat transfer in multilayered thin films[J].Numerical Heat Transfer,Part B:Fundamentals,2004,46(1):31-58.
    [14] DIXIT H,BABU V.Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method[J].International Journal of Heat and Mass Transfer,2006,49(3-4):727-739.
    [15] 谢驰宇,张建影,王沫然.多相非牛顿流体驱替过程的格子Boltzmann模拟[J].计算物理,2016,33(2):147-155.
    [16] 王婷婷,高强,陈建,等.多孔介质方腔内混合对流格子Boltzmann模拟[J].计算物理,2017,34(1):39-46.
    [17] KHANAFER K,VAFAI K,LIGHTSTONE M.Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids[J].International Journal of Heat and Mass Transfer,2003,46(19):3639-3653.
    [18] HAMILTON R L,CROSSER O K.Thermal conductivity of heterogeneous two-component systems[J].Industrial& Engineering Chemistry Fundamentals,1962,1(3):187-191.
    [19] ELLAHI R,ZEESHAN A,HASSAN M.Particle shape effects on Marangoni convection boundary layer flow of a nanofluid[J].International Journal of Numerical Methods for Heat& Fluid Flow,2016,26(7):2160-2174.
    [20] 刘光启,马连湘,刘杰.化学化工物性数据手册[M].北京:化学工业出版社,2002.
    [21] ZHU D S,WU S Y,WANG N.Surface tension and viscosity of aluminum oxide nanofluids[J].International Journal of Numerical Methods for Heat& Fluid Flow,2010.
    [22] CHEN S,DOOLEN G D.Lattice boltzmann method for fluid flows[J].Annual Review of Fluid Mechanics,1998,30(1):329-364.
    [23] QIAN Y H,D'HUMIèRES D,LALLEMAND P.Lattice BGK models for navier-stokes equation[J].Europhysics Letters,1992,17(6):479.
    [24] SHI B,GUO Z.Thermal lattice BGK simulation of turbulent natural convection due to internal heat generation[J].International Journal of Modern Physics B,2003,17(1-2):173-177.
    [25] GUO Z,ZHENG C,SHI B.An extrapolation method for boundary conditions in lattice boltzmann method[J].Physics of Fluids,2002,14(6):2007-2010.
    [26] GAO Z L,ZHAO C G,SUN B C.Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[J].Chinese Physics,2002,11(4):366.
    [27] CARPENTER B M,HOMSY G M.High Marangoni number convection in a square cavity:Part II[J].Physics of Fluids,1998,2(12):3467-3476.
  • 加载中
计量
  • 文章访问数:  261
  • HTML全文浏览量:  49
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-13
  • 刊出日期:  2021-04-25

目录

    /

    返回文章
    返回