留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镁合金/黏结剂复合丝材制备及FDM打印工艺研究

关杰仁 王秋平 阚鑫锋 尹衍军 陈超

关杰仁, 王秋平, 阚鑫锋, 尹衍军, 陈超. 镁合金/黏结剂复合丝材制备及FDM打印工艺研究[J]. 材料开发与应用, 2024, 39(1): 66-73.
引用本文: 关杰仁, 王秋平, 阚鑫锋, 尹衍军, 陈超. 镁合金/黏结剂复合丝材制备及FDM打印工艺研究[J]. 材料开发与应用, 2024, 39(1): 66-73.
GUAN Jieren, WANG Qiuping, KAN Xinfeng, YIN Yanjun, CHEN Chao. Research on Preparation of Magnesium Alloy/Binder Composite Wires and FDM Printing Process[J]. Development and Application of Materials, 2024, 39(1): 66-73.
Citation: GUAN Jieren, WANG Qiuping, KAN Xinfeng, YIN Yanjun, CHEN Chao. Research on Preparation of Magnesium Alloy/Binder Composite Wires and FDM Printing Process[J]. Development and Application of Materials, 2024, 39(1): 66-73.

镁合金/黏结剂复合丝材制备及FDM打印工艺研究

基金项目: 

江苏省高等学校自然科学研究面上项目(22KJB430023)

江苏科技大学自然科学类青年科技创新项目(1172922101)

详细信息
    作者简介:

    关杰仁,男,1991年生,博士,硕士生导师。E-mail:guanjrkmust@163.com

    通讯作者:

    王秋平,女,1989年生,博士,助理研究员。E-mail:a21096@163.com

  • 中图分类号: TG146.2

Research on Preparation of Magnesium Alloy/Binder Composite Wires and FDM Printing Process

  • 摘要: 镁合金具有质轻、比强度高、减震性好、生物相容性高等特点,在航空、航天、生物医疗等领域应用潜力巨大。然而传统的加工技术无法实现一体化复杂结构件的制备,严重制约了镁合金零件的应用推广。增材制造技术是一种基于"离散+堆积"原理的先进技术,有望成为解决镁合金复杂、薄壁结构件难加工的重要技术途径。本研究通过密炼机将高分子黏结剂与镁合金金属粉末混合,利用挤出机制备了适用于熔融沉积(FDM)技术的丝材原料,并研究了FDM工艺对生坯表面形貌的影响规律,采用正交实验和数据统计分析了工艺水平因素对尺寸精度的影响,并提出了后续烧结工序的改进方向。

     

  • [1] HAN D, ZHANG J, HUANG J F, et al. A review on ignition mechanisms and characteristics of magnesium alloys[J]. Journal of Magnesium and Alloys, 2020, 8(2): 329-344.
    [2] BAZHENOV V, KOLTYGIN A, KOMISSAROV A, et al. Gallium-containing magnesium alloy for potential use as temporary implants in osteosynthesis[J]. Journal of Magnesium and Alloys, 2020, 8(2): 352-363.
    [3] 钟智. 镁合金点阵结构激光选区熔化成型及力学性能研究[D]. 贵阳: 贵州大学, 2021.
    [4] LIU Z Y, ZHAO D D, WANG P, et al. Additive manufacturing of metals: Microstructure evolution and multistage control[J]. Journal of Materials Science & Technology, 2022, 100: 224-236.
    [5] QIAN G A, LI Y F, PAOLINO D S, et al. Very high cycle fatigue behavior of Ti-6Al-4V manufactured by selective laser melting: effect of build orientation[J]. International Journal of Fatigue, 2020, 136: 105628.
    [6] JAMSHIDI P, ARISTIZABAL M, KONG W H, et al. Selective laser melting of Ti-6Al-4V: the impact of post-processing on the tensile, fatigue and biological properties for medical implant applications[J]. Materials, 2020, 13(12): 2813.
    [7] ATTAR H, EHTEMAM-HAGHIGHI S, KENT D, et al. Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: a review[J]. International Journal of Machine Tools and Manufacture, 2018, 133: 85-102.
    [8] YANG H H, MENG L, LUO S C, et al. Microstru-ctural evolution and mechanical performances of selective laser melting Inconel 718 from low to high laser power[J]. Journal of Alloys and Compounds, 2020, 828: 154473.
    [9] TUCHO W M, CUVILLIER P, SJOLYST-KVERNELAND A, et al. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment[J]. Materials Science and Engineering: A, 2017, 689: 220-232.
    [10] LUO S C, HUANG W P, YANG H H, et al. Micros-tructural evolution and corrosion behaviors of Inconel 718 alloy produced by selective laser melting following different heat treatments[J]. Additive Manufacturing, 2019, 30: 100875.
    [11] BIFFI C A, FIOCCHI J, TUISSI A. Selective laser melting of AlSi10Mg: influence of process parameters on Mg2Si precipitation and Si spheroidization[J]. Journal of Alloys and Compounds, 2018, 755: 100-107.
    [12] ZHAO N, NASH P. The journal of materials science in China[J]. Journal of Materials Science, 2019, 54: 5989-5991.
    [13] GUAN J R, JIANG Y H, ZHANG X W, et al. Microstructural evolution and EBSD analysis of AlSi10Mg alloy fabricated by selective laser remelting[J]. Materials Characterization, 2020, 161: 110079.
    [14] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
    [15] WANG J, ZHAO Z Y, BAI P K, et al. Microstructu-re and mechanical properties of AZ31 magnesium alloy prepared using wire arc additive manufacturing[J]. Journal of Alloys and Compounds, 2023, 939: 168665.
    [16] WANG Z H, WANG J F, LIN X, et al. Solidification microstructure evolution and its correlations with mechanical properties and damping capacities of Mg-Al-based alloy fabricated using wire and arc additive manufacturing[J]. Journal of Materials Science & Technology, 2023, 144: 28-44.
    [17] 晏小康. 金属浆料喷射3D打印成形微小复杂三维结构关键技术及机理[D]. 武汉: 中国地质大学, 2019.
    [18] 林梓威. 高分子金属复合材料3D打印成型机理及工艺研究[D]. 广州: 华南理工大学, 2019.
    [19] 阚鑫锋. 316L脱粘烧结型熔丝增材制造及加铜改性研究[D]. 北京:北京科技大学, 2022.
    [20] 骆书虎. 基于FDM铜粉复合丝材打印及脱脂烧结工艺研究[D]. 镇江: 江苏科技大学, 2022.
  • 加载中
计量
  • 文章访问数:  41
  • HTML全文浏览量:  4
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-20

目录

    /

    返回文章
    返回