留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

本征型导热绝缘聚合物材料的研究进展

孙旸子 佟忠正

孙旸子, 佟忠正. 本征型导热绝缘聚合物材料的研究进展[J]. 材料开发与应用, 2023, 38(1): 98-108.
引用本文: 孙旸子, 佟忠正. 本征型导热绝缘聚合物材料的研究进展[J]. 材料开发与应用, 2023, 38(1): 98-108.
SUN Yangzi, TONG Zhongzheng. Research Progress of Intrinsically Thermally Conductive Insulating Polymer Materials[J]. Development and Application of Materials, 2023, 38(1): 98-108.
Citation: SUN Yangzi, TONG Zhongzheng. Research Progress of Intrinsically Thermally Conductive Insulating Polymer Materials[J]. Development and Application of Materials, 2023, 38(1): 98-108.

本征型导热绝缘聚合物材料的研究进展

详细信息
    作者简介:

    孙旸子,女,1984年生,高级工程师,主要从事变电运行、电力系统分析、电力系统运行与控制、过程控制及系统建设模等工作。E-mail:csf7734806@163.com

  • 中图分类号: TB324

Research Progress of Intrinsically Thermally Conductive Insulating Polymer Materials

  • 摘要: 导热绝缘材料对于元件散热、集成电路高性能化、节能环保具有重要作用。不同于填料型复合材料,本征型导热绝缘材料聚合物因其优良的电绝缘性、易加工性和良好的热导率而被广泛应用于工业领域。但大多数的综述都关注于填料型复合导热绝缘聚合物材料的发展上,对本征型导热绝缘聚合物材料的综述工作较少。因此,该工作针对于本征型导热绝缘聚合物材料的发展,总结了本征型导热绝缘聚合物材料的技术特点及研究进展,并对未来的发展方向进行了展望。

     

  • [1] 穆静静,赵悦菊,滕济林,等.导热绝缘高分子材料研究与制备[J].电子世界, 2016(11):91.
    [2] LEWIS J S, PERRIER T, BARANI Z, et al. Thermal interface materials with graphene fillers:review of the state of the art and outlook for future applications[J]. Nanotechnology, 2021, 32(14):142003.
    [3] 赵健康,赵鹏,陈铮铮,等.高压直流电缆绝缘材料研究进展评述[J].高电压技术, 2017, 43(11):3490-3503.
    [4] 田恐虎,吴阳,盛绍顶,等.聚合物基绝缘导热复合材料中碳系填料的研究进展[J].复合材料学报, 2021, 38(4):1054-1065.
    [5] AHMED A, QAYOUM A. Investigation on the thermal degradation, moisture absorption characteristics and antibacterial behavior of natural insulation materials[J]. Materials for Renewable and Sustainable Energy, 2021, 10(1):4.
    [6] CHEN J H. Thermal insulation design for efficient and scalable solar water interfacial evaporation and purification[J]. Journal of Materials Science&Technology, 2021, 66:157-162.
    [7] HASEGAWA M, NAGAI S, SOKABE S, et al. Liq-uidcrystalline behavior and thermal conductivity of vinyl polymers containing benzoxazole side groups[J]. Polymer International, 2021, 70(6):812-822.
    [8] LIU H B. The flexible film of SCF/BN/PDMS composites with high thermal conductivity and electrical insulation[J]. Composites Communications, 2021, 23:100573.
    [9] AGARI Y, UEDA A, NAGAI S. Thermal conductivity of a polymer composite[J]. Journal of Applied Polymer Science, 1993, 49(9):1625-1634.
    [10] TSEKMES I A, KOCHETOV R, MORSHUIS P H F, et al. Modeling the thermal conductivity of polymeric composites based on experimental observations[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(2):412-423.
    [11] XIAO M, DU B X. Review of high thermal conductivity polymer dielectrics for electrical insulation[J]. High Voltage, 2016, 1(1):34-42.
    [12] BAO Y, ZHAO X Y. The research applications of new heat insulation composite material in automobiles[J]. Heat Transfer-Asian Research, 2018, 47(1):103-110.
    [13] GONG X T, Feng S M. Eigen equation of super insulation materials[J]. Computational Condensed Matter, 2018, 14:133-136.
    [14] QIN L L, LI G H, HOU J, et al. Preparation, characterization, and thermal properties of poly (methyl-methacrylate)/boron nitride composites by bulk polymerization[J]. Polymer Composites, 2014, 36(9):1675-1684.
    [15] 赵亚林,周正荣,马俊丽,等.环氧树脂基导热复合材料研究进展[J].高分子通报, 2020(12):18-23.
    [16] ZHOU W Y. Thermal and dielectric properties of the AlN particles reinforced linear low-density poly-ethylene composites[J]. Thermochimica Acta, 2011, 512(1-2):183-188.
    [17] 费川,刘毅鑫.氧化铝导热增强聚酰亚胺薄膜的制备和表征[J].纤维复合材料, 2020, 37(3):27-29.
    [18] NAN B F, XIAO L, WU K, et al. Covalently introducing amino-functionalized nanodiamond into water-borne polyurethane via in situ polymerization:enha-nced thermal conductivity and excellent electrical insulation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 596:124752.
    [19] 张凯,桂泰江,吴连锋,等.导热绝缘聚合物复合材料的研究进展[J].材料导报, 2021, 35(S1):571-575.
    [20] 王克智.塑料助剂的开发及应用:抗静电剂[J].塑料科技, 1996, 24(4):42-51.
    [21] 吴雄,陈轩恕,杨跃强,等.水性环氧树脂对聚合物水泥混凝土材料电气性能的影响[J].绝缘材料, 2018, 51(1):27-33.
    [22] 林木松,郭坤,张晟,等.电缆绝缘聚合物材料的老化成因机理及其研究现状[J].高分子材料科学与工程, 2017, 33(12):149-155.
    [23] HARADA M, OCHI M, TOBITA M, et al. Thermal-conductivity properties of liquid-crystalline epoxy resin cured under a magnetic field[J]. Journal of Polymer Science Part B:Polymer Physics, 2003, 41(14):1739-1743.
    [24] BENICEWICZ B C, SMITH M E, EARLS J D, et al. Magnetic field orientation of liquid crystalline epoxy thermosets[J]. Macromolecules, 1998, 31(15):4730-4738.
    [25] SHIOTA A, OBER C K. Orientation of liquid crystalline epoxides under ac electric fields[J]. Macromolecules, 1997, 30(15):4278-4287.
    [26] SONG S H, KATAGI H, TAKEZAWA Y, et al. Study on high thermal conductivity of mesogenic epoxy resin with spherulite structure[J]. Polymer, 2012, 53(20):4489-4492.
    [27] YANG X T. High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers[J]. Composites Part B:Engineering, 2020, 185:107784.
    [28] TANG N, TANAKA S, TAKEZAWA Y, et al. Highly anisotropic thermal conductivity of mesogenic epoxy resin film through orientation control[J]. Journal of Applied Polymer Science, 2021, 138(47):51396.
    [29] HAMMERSCHMIDT A, GEIBEL K, STROHMER F. In situ photopolymerized, oriented liquid-crystalline diacrylates with high thermal conductivities[J]. Advanced Materials, 1993, 5(2):107-109.
    [30] KIM D G, KIM Y H, SHIN T J, et al. Highly anisotropic thermal conductivity of discotic nematic liquid crystalline films with homeotropic alignment[J]. Che-mical Communications, 2017, 53(58):8227-8230.
    [31] CHOY C L, CHEN F C, LUK W H. Thermal conductivity of oriented crystalline polymers[J]. Journal of Polymer Science:Polymer Physics Edition, 1980, 18(6):1187-1207.
    [32] CHOY C L, FEI Y, XI T G. Thermal conductivity of gel-spun polyethylene fibers[J]. Journal of Polymer Science Part B:Polymer Physics, 1993, 31(3):365-370.
    [33] GUPTA S, SCHIEBER J D, VENERUS D C. Anisotropic thermal conduction in polymer melts in uniaxial elongation flows[J]. Journal of Rheology, 2013, 57(2):427-439.
    [34] SHEN S, HENRY A, TONG J, et al. Polyethylene nanofibres with very high thermal conductivities[J]. Nature Nanotechnology, 2010, 5(4):251-255.
    [35] FUJISHIRO H, IKEBE M, KASHIMA T, et al. Thermal conductivity and diffusivity of high-strength polymer fibers[J]. Japanese Journal of Applied Physics, 1997, 36(Part 1, No. 9A):5633-5637.
    [36] WANG X J, HO V, SEGALMAN R, et al. Thermal conductivity of high-modulus polymer fibers[J]. Macromolecules, 2013, 46(12):4937-4943.
    [37] LIANG Y, WENG L, ZHANG W L, et al. Block polypropylene/styrene-ethylene-butylene-styrene tri-block copolymer blends for recyclable HVDC cable insulation[J]. Materials Research Express, 2020, 7(8):085301.
    [38] GREEN C D, VAUGHAN A S, STEVENS G C, et al. Thermoplastic cable insulation comprising a blend of isotactic polypropylene and a propylene-ethylene copolymer[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(2):639-648.
    [39] CHIEN H C, PENG W T, CHIU T H, et al. Heat transfer of semicrystalline nylon nanofibers[J]. ACS Nano, 2020, 14(3):2939-2946.
    [40] XUE J J, WU T, DAI Y Q, et al. Electrospinning and electrospun nanofibers:methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8):5298-5415.
    [41] KISHAN A P, COSGRIFF-HERNANDEZ E M. Re-cent advancements in electrospinning design for tissue engineering applications:a review[J]. Journal of Biomedical Materials Research Part A, 2017, 105(10):2892-2905.
    [42] CHEN L, WANG S, YU Q Q, et al. A comprehensive review of electrospinning block copolymers[J]. Soft Matter, 2019, 15(12):2490-2510.
    [43] GHAFFARI-MOSANENZADEH S, AGHABABAEI TAFRESHI O, DAMMEN-BROWER E, et al. A review on high thermally conductive polymeric compo-sites[J]. Polymer Composites, 2022, 43(2):692-711.
    [44] GIBSON A G, GREIG D, SAHOTA M, et al. Therm-al conductivity of ultrahigh-modulus polyethylene[J]. Journal of Polymer Science:Polymer Letters Edition, 1977, 15(4):183-192.
    [45] MA J, ZHANG Q, MAYO A, et al. Thermal conductivity of electrospun polyethylene nanofibers[J]. Nanoscale, 2015, 7(40):16899-16908.
    [46] ZHONG Z X, WINGERT M C, STRZALKA J, et al. Structure-induced enhancement of thermal conductivities in electrospun polymer nanofibers[J]. Nanoscale, 2014, 6(14):8283-8291.
    [47] LU C H, CHIANG S W, DU H D, et al. Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO)[J]. Polymer, 2017, 115:52-59.
    [48] DODD S J, SUTTON S J, CHAMPION J V, et al. Influence of morphology on electrical treeing in polyethylene blends[J]. IEE Proceedings-Science, Measurement and Technology, 2003, 150(2):58-64.
    [49] ZHANG Y H, PARK M, PARK S J. Implication of thermally conductive nanodiamond-interspersed gr-aphite nanoplatelet hybrids in thermoset composites with superior thermal management capability[J]. Scientific Reports, 2019, 9:2893.
    [50] XU X F, CHEN J, ZHOU J, et al. Thermal conductivity of polymers and their nanocomposites[J]. Advanced Materials (Deerfield Beach, Fla), 2018, 30(17):e1705544.
    [51] FENG C P, CHEN L B, TIAN G L, et al. Multifunctional thermal management materials with excellent heat dissipation and generation capability for future electronics[J]. ACS Applied Materials&Interfaces, 2019, 11(20):18739-18745.
    [52] LIU Z D, CHEN Y P, LI Y F, et al. Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement[J]. Nanoscale, 2019, 11(38):17600-17606.
    [53] JIANG F, CUI S Q, RUNGNIM C, et al. Control of a dual-cross-linked boron nitride framework and the optimized design of the thermal conductive network for its thermoresponsive polymeric composites[J]. Chemistry of Materials, 2019, 31(18):7686-7695.
  • 加载中
计量
  • 文章访问数:  107
  • HTML全文浏览量:  31
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-21
  • 网络出版日期:  2023-03-11

目录

    /

    返回文章
    返回