Volume 38 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
WANG Weijia, LI Fengyuan, ZHANG Zixuan, YANG Dongshu, HUANG Ying. Research Progress in Cathode Material for Lithium-Sulfur Batteries[J]. Development and Application of Materials, 2023, 38(3): 96-104.
Citation: WANG Weijia, LI Fengyuan, ZHANG Zixuan, YANG Dongshu, HUANG Ying. Research Progress in Cathode Material for Lithium-Sulfur Batteries[J]. Development and Application of Materials, 2023, 38(3): 96-104.

Research Progress in Cathode Material for Lithium-Sulfur Batteries

  • Received Date: 2022-10-11
    Available Online: 2023-07-10
  • The future development trend in the energy field focuses on green and clean energy. Lithium-sulfur battery has become a new hot spot in battery research due to its advantages of high specific energy and low cost. However, there are still many problems hindering the commercialization of lithium-sulfur batteries, such as the poor conductivity of the positive material sulfur, the shuttle effect of the positive product polysulfide, and the volume expansion of the battery's internal electrodes during the process of charge and discharge. In this study, the research progress of lithium-sulfur battery cathode materials in recent years is reviewed, the application of metal-organic framework compounds, carbon materials and conductive polymers in lithium-sulfur battery cathode materials is discussed, and the development of lithium-sulfur battery cathode materials is prospected.

     

  • loading
  • [1]
    BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19-29.
    [2]
    XU W, WANG J L, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 513-537.
    [3]
    ELAZARI R, SALITRA G, TALYOSEF Y, et al. M-orphological and structural studies of composite sulfur electrodes upon cycling by HRTEM, AFM and Raman spectroscopy[J]. Journal of the Electrochemical Society, 2010, 157(10): A1131.
    [4]
    WANG L, HE X M, LI J J, et al. Analysis of the sy-nthesis process of sulphur-poly(acrylonitrile)-based cathode materials for lithium batteries[J]. Journal of Materials Chemistry, 2012, 22(41): 22077-22081.
    [5]
    吕羚源. 导电聚合物包覆S-C正极材料的制备及电化学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
    [6]
    杨金宝, 白瑞钦, 马勇, 等. 含磺酸基染料掺杂聚吡咯的研究进展[J]. 胶体与聚合物, 2020, 38(3): 130-134.
    [7]
    刘晔. 聚吡咯及其杂化材料在锂硫电池正极中的应用[D]. 太原: 太原理工大学,2019.
    [8]
    周蜀东. 锂硫电池正极材料改性研究[D]. 杭州: 浙江大学,2019.
    [9]
    刘晔, 宋茜, 李璇, 等. 聚吡咯/氧化钒@硫正极材料制备及其在锂硫电池中的应用[J]. 人工晶体学报, 2019, 48(11): 2069-2074.
    [10]
    李宇洁, 周小中. 硫/聚吡咯正极材料的制备及性能研究[J]. 陇东学院学报, 2019, 30(2): 20-26.
    [11]
    WU G, MORE K L, JOHNSTON C M, et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011, 332(6028): 443-447.
    [12]
    马萍, 张宝宏, 巩桂英, 等. 聚苯胺/硫复合材料作锂二次电池正极的研究[J]. 功能材料与器件学报, 2007, 13(5): 437-442.
    [13]
    ZHOU W D, YU Y C, CHEN H, et al. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2013, 135(44): 16736-16743.
    [14]
    LI X G, RAO M M, LI W S. Sulfur encapsulated in porous carbon nanospheres and coated with conductive polyaniline as cathode of lithium-sulfur battery[J]. Journal of Solid State Electrochemistry, 2016, 20(1): 153-161.
    [15]
    张婉容, 万凯, 朱超, 等. 导电聚合物复合材料作锂离子电池正极材料研究进展[J]. 胶体与聚合物, 2017, 35(1): 41-44.
    [16]
    SU Z S, WANG L D, LI Y T, et al. Ultraviolet-ozone-treated PEDOT: PSS as anode buffer layer for organic solar cells[J]. Nanoscale Research Letters, 2012, 7(1): 465.
    [17]
    WU F,CHEN J Z,CHEN R J,et al. Sulfur/Polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries[J]. Journal of Physical Chemistry C, 2011, 115(13):6057-6063.
    [18]
    赵桂香. 多孔碳的制备改性及其在锂硫电池中的应用[D]. 兰州: 兰州理工大学, 2021.
    [19]
    陈一帆. 锂硫电池正极材料的制备及性能研究[D]. 北京: 北京化工大学, 2020.
    [20]
    沙畅畅, 毛杨杨, 曹永安, 等. 用于锂硫电池正极的生物质碳材料制备与应用[J]. 石油化工高等学校学报, 2020, 33(3): 1-7.
    [21]
    JI X L, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506.
    [22]
    陈锋. 石墨烯基碳材料改性隔膜的制备及其在锂硫电池中的应用[D]. 太原: 太原理工大学, 2021.
    [23]
    HAN S C, SONG M S, LEE H, et al. Effect of multiwalled carbon nanotubes on electrochemical properties of lithium/sulfur rechargeable batteries[J]. Journal of the Electrochemical Society, 2003, 150(7): A889.
    [24]
    YUAN Z, PENG H J, HUANG J Q, et al. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries[J]. Advanced Functional Materials, 2014, 24(39): 6105-6112.
    [25]
    马俊胜. 石墨烯基锂硫电池的正极设计与性能研究[D]. 北京: 北京科技大学, 2022.
    [26]
    WANG Z Y, DONG Y F, LI H J, et al. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide[J]. Nature Communications, 2014, 5(1): 1-8.
    [27]
    ZHANG Y Y, GAO Z, SONG N N, et al. Graphene and its derivatives in lithium-sulfur batteries[J]. Materials Today Energy, 2018, 9: 319-335.
    [28]
    WANG J Z, LU L, CHOUCAIR M, et al. Sulfur-graphene composite for rechargeable lithium batteries[J]. Journal of Power Sources, 2011, 196(16): 7030-7034.
    [29]
    WANG H L, YANG Y, LIANG Y Y, et al. Graphe-newrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability[J]. Nano Letters, 2011, 11(7): 2644-2647.
    [30]
    ZHAO S R, LI C M, WANG W K, et al. A novel porous nanocomposite of sulfur/carbon obtained from fish scales for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(10): 3334-3339.
    [31]
    LIU S H, LI J, YAN X, et al. Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium-sulfur batteries[J]. Advanced Materials, 2018, 30(12): 1706895.
    [32]
    CHENG Z B, XIAO Z B, PAN H, et al. Lithium sulfur batteries: elastic sandwich-type rGO-VS2/S composites with high tap density: structural and chemical cooperativity enabling lithium-sulfur batteries with high energy density (adv. energy mater. 10/2018)[J]. Advanced Energy Materials, 2018, 8(10): 1870046.
    [33]
    KONG L, LI B Q, PENG H J, et al. Porphyrin-derived graphene-based nanosheets enabling strong polysulfide chemisorption and rapid kinetics in lithium-sulfur batteries[J]. Advanced Energy Materials, 2018, 8(20): 1800849.
    [34]
    SONG J X, XU T, GORDIN M L, et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries[J]. Advanced Functional Materials, 2014, 24(9): 1243-1250.
    [35]
    杨晨曦. 金属有机骨架化合物历史及研究进展[J]. 材料化学前沿, 2020(1): 1-4.
    [36]
    ZHENG Y, ZHENG S S, XUE H G, et al. Metal-organic frameworks for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2019, 7(8): 3469-3491.
    [37]
    汪萍. MOFs在锂硫电池正极中的应用[J]. 广州化工, 2021, 49(23): 15-16.
    [38]
    刘月娇. MOFs衍生物作为锂硫电池限硫载体的设计制备及其电化学性能研究[D]. 南京: 南京邮电大学, 2018.
    [39]
    FANG X, PENG H S. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries[J]. Small (Weinheim an Der Bergstrasse, Germany), 2015, 11(13): 1488-1511.
    [40]
    LI Z Q, YIN L W. Nitrogen-doped MOF-derived micropores carbon as immobilizer for small sulfur molecules as a cathode for lithium sulfur batteries with excellent electrochemical performance[J]. ACS Applied Materials & Interfaces, 2015, 7(7): 4029-4038.
    [41]
    MAO Y Y, LI G R, GUO Y, et al. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries[J]. Nature Communications, 2017, 8(1): 1-8.
    [42]
    CAI D, LU M J, LI L, et al. A highly conductive MOF of graphene analogue Ni(3) (HITP)(2) as a sulfur host for high-performance lithium-sulfur batteries[J]. Small (Weinheim an Der Bergstrasse, Germany), 2019, 15(44): e1902605.
    [43]
    苏卫, 唐梓桓, 郑洋, 等. MOFs及其衍生物在锂硫电池正极中的应用[J]. 辽宁石油化工大学学报, 2020, 40(4): 59-69.
    [44]
    YANG X F, YAN N, ZHOU W, et al. Sulfur embedded in one-dimensional French fries-like hierarchical porous carbon derived from a metal-organic framework for high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2015, 3(29): 15314-15323.
    [45]
    LIANG C D, DUDNEY N J, HOWE J Y. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery[J]. Chemistry of Materials, 2009, 21(19): 4724-4730.
    [46]
    XU J, ZHANG W X, CHEN Y, et al. MOF-derived porous N-Co3O4@N-C nanododecahedra wrapped with reduced graphene oxide as a high capacity cathode for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2018, 6(6): 2797-2807.
    [47]
    LI W L, QIAN J, ZHAO T, et al. Boosting high-rate Li-S batteries by an MOF-derived catalytic electrode with a layer-by-layer structure[J]. Advanced Science, 2019, 6(16): 1802362.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (179) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return