Volume 39 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
BI Jianlei, WEI Wu, ZHAI Yuyan, PEI Yu, WEN Shengping, RONG Li, HUANG Hui, NIE Zuoren. Research and Progress of Aluminum Alloys Containing Erbium by Laser Powder Bed Fusion[J]. Development and Application of Materials, 2024, 39(1): 94-104.
Citation: BI Jianlei, WEI Wu, ZHAI Yuyan, PEI Yu, WEN Shengping, RONG Li, HUANG Hui, NIE Zuoren. Research and Progress of Aluminum Alloys Containing Erbium by Laser Powder Bed Fusion[J]. Development and Application of Materials, 2024, 39(1): 94-104.

Research and Progress of Aluminum Alloys Containing Erbium by Laser Powder Bed Fusion

  • Received Date: 2023-10-27
  • Additive manufacturing aluminium alloy technology has been rapidly developed in recent years, especially the laser powder bed fusion (LPBF) technology, which has achieved application verification on some components. In the LPBF technology, the formability and mechanical properties of alloys are often improved by adding trace elements, for example the rare earth erbium (Er) element. In this study, the evolvement mechanism and time response of Er element on the formability, microstructure and mechanical properties of aluminium alloys in the LPBF process. The existence and application of Er element in the Al-Si, Al-Mg and Al-Zn-Mg-Cu alloys by the LPBF technology, and the mechanical properties of aluminium alloys containing Er element are compared. The future development of the LPBF aluminium alloys containing Er element is put forward.

     

  • loading
  • [1]
    ABOULKHAIR N T, SIMONELLI M, PARRY L, et al. 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting[J]. Progress in Materials Science, 2019, 106: 100578.
    [2]
    MICHI R A, PLOTKOWSKI A, SHYAM A, et al. To-wards high-temperature applications of aluminium alloys enabled by additive manufacturing[J]. International Materials Reviews, 2022, 67(3): 298-345.
    [3]
    DEBROY T, WEI H L, ZUBACK J S, et al. Additive manufacturing of metallic components - Process, structure and properties[J]. Progress in Materials Science, 2018, 92: 112-224.
    [4]
    LIU Q, WU H K, PAUL M J, et al. Machinelear-ning assisted laser powder bed fusion process optimization for AlSi10Mg: new microstructure description indices and fracture mechanisms[J]. Acta Materialia, 2020, 201: 316-328.
    [5]
    KEMPF A, HILGENBERG K. Influence of sub-cell structure on the mechanical properties of AlSi10Mg manufactured by laser powder bed fusion[J]. Materials Science and Engineering: A, 2020, 776: 138976.
    [6]
    WANG R, WANG J, LEI L M, et al. Laser additive manufacturing of strong and ductile Al-12Si alloy under static magnetic field[J]. Journal of Materials Science & Technology, 2023, 163: 101-112.
    [7]
    RAO H, GIET S, YANG K, et al. The influence of processing parameters on aluminium alloy A357 manufactured by Selective Laser Melting[J]. Materials & Design, 2016, 109: 334-346.
    [8]
    TANG H P, GAO C F, ZHANG Y, et al. Effects of direct aging treatment on microstructure, mechanical properties and residual stress of selective laser melted AlSi10Mg alloy[J]. Journal of Materials Science & Technology, 2023, 139: 198-209.
    [9]
    PELLIZZARI M, MALFATTI M, LORA C, et al. Pro-perties of laser metal fused AlSi10Mg alloy processed using different heat treatments[J]. BHM Berg-Und Hüttenmännische Monatshefte, 2020, 165(3): 164-168.
    [10]
    WANG M, SONG B, WEI Q S, et al. Effects of annealing on the microstructure and mechanical properties of selective laser melted AlSi7Mg alloy[J]. Materials Science and Engineering: A, 2019, 739: 463-472.
    [11]
    YANG K, ROMETSCH P, DAVIES C H J, et al. Ef-fect of heat treatment on the microstructure and anisotropy in mechanical properties of A357 alloy produced by selective laser melting[J]. Materials & Design, 2018, 154: 275-290.
    [12]
    PADOVANO E, BADINI C, PANTARELLI A, et al. A comparative study of the effects of thermal treatments on AlSi10Mg produced by laser powder bed fusion[J]. Journal of Alloys and Compounds, 2020, 831: 154822.
    [13]
    魏午, 毕舰镭, 郭彦梧, 等. 激光粉末床融合铝合金微合金化研究进展[J]. 海军航空大学学报, 2023, 38(4): 338-346.
    [14]
    SPIERINGS A B, DAWSON K, DUMITRASCHKEWITZ P, et al. Microstructure characterization of SLM-processed Al-Mg-Sc-Zr alloy in the heat treated and HIPed condition[J]. Additive Manufacturing, 2018, 20: 173-181.
    [15]
    SPIERINGS A B, DAWSON K, KERN K, et al. SLM-processed Sc- and Zr- modified Al-Mg alloy: mechanical properties and microstructural effects of heat treatment[J]. Materials Science and Engineering: A, 2017, 701: 264-273.
    [16]
    CABRERA-CORREA L, GONZÁLEZ-ROVIRA L, DE DIOS LÓPEZ-CASTRO J, et al. Effect of the heat treatment on the mechanical properties and microstructure of Scalmalloy© manufactured by Selective Laser Melting (SLM) under certified conditions[J]. Materials Characterization, 2023, 196: 112549.
    [17]
    AWD M, TENKAMP J, HIRTLER M, et al. Compa-rison of microstructure and mechanical properties of scalmalloy© produced by selective laser melting and laser metal deposition[J]. Materials, 2017, 11(1): 17.
    [18]
    SPIERINGS A B, DAWSON K, UGGOWITZER P J, et al. Influence of SLM scan-speed on microstructure, precipitation of Al3Sc particles and mechanical properties in Sc- and Zr-modified Al-Mg alloys[J]. Materials & Design, 2018, 140: 134-143.
    [19]
    LI R D, WANG M B, LI Z M, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms[J]. Acta Materialia, 2020, 193: 83-98.
    [20]
    CROTEAU J R, GRIFFITHS S, ROSSELL M D, et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting[J]. Acta Materialia, 2018, 153: 35-44.
    [21]
    GUO Y W, WEI W, SHI W, et al. Effect of Er and Zr additions and aging treatment on grain refinement of aluminum alloy fabricated by laser powder bed fusion[J]. Journal of Alloys and Compounds, 2022, 912: 165237.
    [22]
    GUO Y W, WEI W, SHI W, et al. Microstructure and mechanical properties of Al-Mg-Mn-Er-Zr alloys fabricated by laser powder bed fusion[J]. Materials & Design, 2022, 222: 111064.
    [23]
    ZHANG B, WEI W, SHI W, et al. Effect of heat treatment on the microstructure and mechanical properties of Er-containing Al-7Si-0.6 Mg alloy by laser powder bed fusion[J]. Journal of Materials Research and Technology, 2022, 18: 3073-3084.
    [24]
    LI M, YAO S, WANG J J, et al. Role of Er on the densification, microstructure and mechanical properties of 7075 aluminium alloys manufactured by laser powder bed fusion[J]. Journal of Materials Research and Technology, 2022, 20: 2021-2033.
    [25]
    GUO Y W, WEI W, SHI W, et al. Effect of aging treatment on phase evolution and mechanical properties of selective laser melted Al-Mg-Er-Zr alloy[J]. Materials Letters, 2022, 327: 133001.
    [26]
    WEN S P, GAO K Y, LI Y, et al. Synergetic effect of Er and Zr on the precipitation hardening of Al-Er-Zr alloy[J]. Scripta Materialia, 2011, 65(7): 592-595.
    [27]
    WEN S P, GAO K Y, HUANG H, et al. Precipita-tion evolution in Al-Er-Zr alloys during aging at elevated temperature[J]. Journal of Alloys and Compounds, 2013, 574: 92-97.
    [28]
    WEN S P, XING Z B, HUANG H, et al. The effect of erbium on the microstructure and mechanical properties of Al-Mg-Mn-Zr alloy[J]. Materials Science and Engineering: A, 2009, 516(1-2): 42-49.
    [29]
    PRASHANTH K G, ECKERT J. Formation of metastable cellular microstructures in selective laser melted alloys[J]. Journal of Alloys and Compounds, 2017, 707: 27-34.
    [30]
    MARQUIS E A, SEIDMAN D N. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys[J]. Acta Materialia, 2001, 49(11): 1909-1919.
    [31]
    HYER H, ZHOU L, MEHTA A, et al. Composition-dependent solidification cracking of aluminum-silicon alloys during laser powder bed fusion[J]. Acta Materialia, 2021, 208: 116698.
    [32]
    HYER H, ZHOU L, MEHTA A, et al. Effects of al-loy composition and solid-state diffusion kinetics on powder bed fusion cracking susceptibility[J]. Journal of Phase Equilibria and Diffusion, 2021, 42(1): 5-13.
    [33]
    张冬云. 采用区域选择激光熔化法制造铝合金模型[J]. 中国激光, 2007, 34(12): 1700-1704.
    [34]
    PAUL M J, LIU Q, BEST J P, et al. Fracture resis-tance of AlSi10Mg fabricated by laser powder bed fusion[J]. Acta Materialia, 2021, 211: 116869.
    [35]
    CHEN B, MOON S K, YAO X, et al. Strength and strain hardening of a selective laser melted AlSi10Mg alloy[J]. Scripta Materialia, 2017, 141: 45-49.
    [36]
    COLOMBO M, GARIBOLDI E, MORRI A. Er addi-tion to Al-Si-Mg-based casting alloy: effects on microstructure, room and high temperature mechanical properties[J]. Journal of Alloys and Compounds, 2017, 708: 1234-1244.
    [37]
    QI P, LI B L, WANG T B, et al. Effect of erbium on the microstructure and mechanical properties of semi-solid Al–7Si–0.4Mg alloy[J]. Advanced Engineering Materials, 2019, 21(3): 1801037.
    [38]
    RUTTER J W, CHALMERS B. A prismatic substructure formed during solidification of metals[J]. Canadian Journal of Physics, 1953, 31(1): 15-39.
    [39]
    GUO Y W, WEI W, SHI W, et al. Selective laser melting of Er modified AlSi7Mg alloy: effect of processing parameters on forming quality, microstructure and mechanical properties[J]. Materials Science and Engineering: A, 2022, 842: 143085.
    [40]
    BI J L, WEI W, GUO Y W, et al. Evolution of multi-cellular structure on Zr and Er modified Al6Si1Mg alloy fabricated by laser powder bed fusion[J]. Journal of Materials Research and Technology, 2023, 25: 398-410.
    [41]
    OKAMOTO H. Al-Er (aluminum-erbium)[J]. Jo-urnal of Phase Equilibria and Diffusion, 2011, 32(3): 261-262.
    [42]
    GUO Y W, WEI W, HUANG H, et al. Approaching an ultrafine microstructure and excellent tensile pro-perties of a novel Er/Zr modified Al-7Si-0.6 Mg alloy fabricated by selective laser melting[J]. Journal of Materials Research and Technology, 2023, 22: 1625-1637.
    [43]
    FIOCCHI J, TUISSI A, BIFFI C A. Heat treatment of aluminium alloys produced by laser powder bed fusion: a review[J]. Materials & Design, 2021, 204: 109651.
    [44]
    ZOU T C, CHEN M Y, ZHU H, et al. Effect of heat treatments on microstructure and mechanical properties of AlSi7Mg fabricated by selective laser melting[J]. Journal of Materials Engineering and Performance, 2022, 31(3): 1791-1802.
    [45]
    FIOCCHI J, BIFFI C A, COLOMBO C, et al. Ad hoc heat treatments for selective laser melted Alsi10mg alloy aimed at stress-relieving and enhancing mechanical performances[J]. JOM, 2020, 72(3): 1118-1127.
    [46]
    郭泽亮, 樊笑婕. 美国濒海战斗舰用铝合金材料评述[J]. 材料开发与应用, 2021, 36(6): 77-82.
    [47]
    STARINK M J, ZAHRA A M. β’ and β precipitation in an Al-Mg alloy studied by DSC and TEM[J]. Acta Materialia, 1998, 46(10): 3381-3397.
    [48]
    KOTOV A D, MOCHUGOVSKIY A G, MOSLEH A O, et al. Microstructure, superplasticity, and mechanical properties of Al-Mg-Er-Zr alloys[J]. Materials Characterization, 2022, 186: 111825.
    [49]
    SUN Y W, WANG J L, SHI Y, et al. An SLM-processed Er- and Zr- modified Al-Mg alloy: Microstructure and mechanical properties at room and elevated temperatures[J]. Materials Science and Engineering: A, 2023, 883: 145485.
    [50]
    吴颖, 温彤, 朱曾涛. 7xxx系铝合金时效处理的研究现状及应用进展[J]. 材料导报, 2012, 26(15): 114-118.
    [51]
    李敬勇, 王虎, 刘志鹏, 等. 预拉伸条件下铝合金筒体焊接残余应力和变形的数值模拟[J]. 材料开发与应用, 2008, 23(5): 52-55.
    [52]
    MONTERO-SISTIAGA M L, MERTENS R, VRA-NCKEN B, et al. Changing the alloy composition of Al7075 for better processability by selective laser melting[J]. Journal of Materials Processing Technology, 2016, 238: 437-445.
    [53]
    OTANI Y, SASAKI S. Effects of the addition of silic-on to 7075 aluminum alloy on microstructure, mechanical properties, and selective laser melting processability[J]. Materials Science and Engineering: A, 2020, 777: 139079.
    [54]
    SUN S Y, LIU P, HU J Y, et al. Effect of solid solution plus double aging on microstructural characterization of 7075 Al alloys fabricated by selective laser melting (SLM)[J]. Optics & Laser Technology, 2019, 114: 158-163.
    [55]
    ZHOU L, PAN H, HYER H, et al. Microstructure and tensile property of a novel AlZnMgScZr alloy additively manufactured by gas atomization and laser powder bed fusion[J]. Scripta Materialia, 2019, 158: 24-28.
    [56]
    ZHU Z G, NG F L, SEET H L, et al. Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation[J]. Materials Today, 2022, 52: 90-101.
    [57]
    ZHANG Z Q, LI D H, LI S C, et al. Effect of direct aging treatment on microstructure, mechanical and corrosion properties of a Si-Zr-Er modified Al-Zn-Mg-Cu alloy prepared by selective laser melting technology[J]. Materials Characterization, 2022, 194: 112459.
    [58]
    LI D H, ZHANG Z Q, LI S C, et al. Microstructure, mechanical properties and fatigue crack growth behavior of an Al-Zn-Mg-Cu-Si-Zr-Er alloy fabricated by laser powder bed fusion[J]. International Journal of Fatigue, 2023, 172: 107636.
    [59]
    LIU S W, ZHU H H, PENG G Y, et al. Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis[J]. Materials & Design, 2018, 142: 319-328.
    [60]
    HU Z H, NIE X J, QI Y, et al. Cracking criterion for high strength Al-Cu alloys fabricated by selective laser melting[J]. Additive Manufacturing, 2021, 37: 101709.
    [61]
    TANG Y T, PANWISAWAS C, GHOUSSOUB J N, et al. Alloys-by-design: application to new superalloys for additive manufacturing[J]. Acta Materialia, 2021, 202: 417-436.
    [62]
    ZHAO Z Y, WANG J B, DU W B, et al. Numerical simulation and experimental study of the 7075 aluminum alloy during selective laser melting[J]. Optics & Laser Technology, 2023, 167: 109814.
    [63]
    KANNO M, ARAKI I, CUI Q. Precipitation beha-viour of 7000 alloys during retrogression and reaging treatment[J]. Materials Science and Technology, 1994, 10(7): 599-603.
    [64]
    朱溪, 袁铁锤, 王敏卜, 等. 选区激光熔化增材制造高强度Al-Mg-Sc-Zr合金的微观组织与力学性能[J]. 粉末冶金材料科学与工程, 2022, 27(2): 205-214.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (58) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return