磁场对垂直半连续铸造Cu-15Ni-8Sn合金组织与性能的影响

刘健, 彭博, 李国梁, 王明飞, 王会琨, 接金川, 李廷举

刘健, 彭博, 李国梁, 王明飞, 王会琨, 接金川, 李廷举. 磁场对垂直半连续铸造Cu-15Ni-8Sn合金组织与性能的影响[J]. 材料开发与应用, 2025, 40(1): 68-74,83.
引用本文: 刘健, 彭博, 李国梁, 王明飞, 王会琨, 接金川, 李廷举. 磁场对垂直半连续铸造Cu-15Ni-8Sn合金组织与性能的影响[J]. 材料开发与应用, 2025, 40(1): 68-74,83.
LIU Jian, PENG Bo, LI Guoliang, WANG Mingfei, WANG Huikun, JIE Jinchuan, LI Tingju. Effect of Magnetic Field on Microstructure and Properties of Cu-15Ni-8Sn Alloy Prepared by Vertical Semi-Continuous Casting[J]. Development and Application of Materials, 2025, 40(1): 68-74,83.
Citation: LIU Jian, PENG Bo, LI Guoliang, WANG Mingfei, WANG Huikun, JIE Jinchuan, LI Tingju. Effect of Magnetic Field on Microstructure and Properties of Cu-15Ni-8Sn Alloy Prepared by Vertical Semi-Continuous Casting[J]. Development and Application of Materials, 2025, 40(1): 68-74,83.

磁场对垂直半连续铸造Cu-15Ni-8Sn合金组织与性能的影响

基金项目: 

国家自然科学基金(52071050)

国家重点研发计划(2018YFE0306103)

详细信息
    作者简介:

    刘健,男,1997年生,博士研究生。E-mail:12305019@mail.dlut.edu.cn

    通讯作者:

    接金川,男,1981年生,博士,教授,博导。E-mail:jiejc@dlut.edu.cn

  • 中图分类号: TG146

Effect of Magnetic Field on Microstructure and Properties of Cu-15Ni-8Sn Alloy Prepared by Vertical Semi-Continuous Casting

  • 摘要: 通过在垂直半连续铸造过程中施加磁场与不施加磁场制备了两种不同晶粒尺寸的Cu-15Ni-8Sn合金棒材,并对两种合金棒材的微观组织和力学性能进行研究。微观组织分析结果表明,未施加磁场样品的微观组织中存在少量枝晶组织,而施加磁场样品的则完全为均匀细小的等轴晶;未施加磁场样品的平均晶粒尺寸为833.7 μm,施加磁场样品的平均晶粒尺寸为54.6 μm;施加磁场样品的Sn元素微观偏析有所改善,与未施加磁场样品的相比,富Sn相尺寸较小,且分布更加均匀。两种样品的铸态拉伸性能显示,施加磁场样品的抗拉强度、屈服强度、断后伸长率分别为465 MPa、290 MPa、15.4%;未施加磁场样品的抗拉强度、屈服强度、断后伸长率分别为429 MPa、242 MPa、23.9%。
    Abstract: Two kinds of Cu-15Ni-8Sn alloy rods are prepared by vertical semi-continuous casting with and without magnetic field applied. The microstructures of the two alloy rods are observed, their grain sizes measured, their element distributions observed, and their mechanical properties tested. Results show that a small amount of dendrite structure is found in the microstructure of the sample without magnetic field, while the microstructure of the sample with magnetic field is composed of uniform and fine equiaxed crystal. The average grain size of the sample without magnetic field is 833.7 μm, and that of the sample with magnetic field is 54.6 μm. The microsegregation of Sn element in the sample with magnetic field is improved. Compared with the sample without magnetic field, the size of Sn-rich phase of the sample with magnetic field is smaller and the distribution is more uniform. The tensile strength, yield strength and percentage elongation after fracture of the sample with magnetic field are 465 MPa, 290 MPa and 15.4%, respectively. Those of the sample without magnetic field are 429 MPa, 242 MPa and 23.9%, respectively.
  • [1] 彭广威, 魏祥, 何延钢, 等. Cu-Ni-Sn合金中微合金元素析出相的第一性原理计算与分析[J]. 特种铸造及有色合金, 2023, 43(1): 77-82.
    [2] 郭中凯. 高强高弹Cu-15Ni-8Sn合金的制备及组织性能研究[D].大连:大连理工大学,2021.
    [3]

    PENG G, GAN X. Research progress and prospect of Cu-15Ni-3Sn alloy[J]. Mould. Mater., 2016(16): 73-76.

    [4]

    TANG R, WANG J, YIN J, et al. Studies on new elastic alloy[J]. Mater. Rep., 2005(1): 54-55.

    [5]

    SHEN Z, ZHOU B F, ZHONG J, et al. Evolutions of the micro- and macrostructure and tensile property of Cu-15Ni-8Sn alloy during electromagnetic stirring-assisted horizontal continuous casting[J]. Metallurgical and Materials Transactions B, 2019, 50(5): 2111-2120.

    [6]

    JADHAV S D, DADBAKHSH S, GOOSSENS L, et al. Influence of selective laser melting process parameters on texture evolution in pure copper[J]. Mater. Process. Technol., 2019(270): 47-58.

    [7]

    GUO C J, SHI Y F, SHEN S W, et al. Microstru-ctural changes and dry sliding wear behavior of Cu-15Ni-8Sn-0.5Co alloy during deformation and aging treatment[J]. Materials Today Communications, 2024, 38: 107961.

    [8]

    GUO L, ZUO P, ZHANG Z, et al. A review of Cu-Ni-Sn alloys: processing, microstructure, properties, and developing trends[J]. Materials (Basel), 2023, 16(1): 444.

    [9]

    ZHANG G M, CHEN C, WANG X J, et al. Additive manufacturing of fine-structured copper alloy by selective laser melting of pre-alloyed Cu-15Ni-8Sn powder[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(9): 4223-4230.)

    [10]

    MÁRA V, KRČIL J, HORNÍK J. Microstructure evolution after hot working and heat treatment in 6082 aluminum alloy manufactured by horizontal continuous casting[J]. Journal of Alloys and Compounds, 2024, 1008: 176839.

    [11]

    YANG Q R, LIU Q, LIU X H, et al. Microstructure and mechanical properties of Cu-Ni-Si alloy plate produced by HCCM horizontal continuous casting[J]. Journal of Alloys and Compounds, 2022, 893: 162302.

    [12] 曲建平, 刘佳, 岳世鹏, 等. 旋转磁场调控优化Cu-Cr-Zr-Si合金组织和性能[J]. 铜业工程, 2023(5): 1-9.
    [13] 耿雪峰, 徐宏, 张莉. 电磁技术在材料加工过程中的应用与发展[J]. 大型铸锻件, 2005(3): 4-8.
    [14] 施维慰, 唐远路, 郝天, 等. 脉冲磁场对ZL205A铝合金凝固组织和力学性能的影响[J]. 特种铸造及有色合金, 2024, 44(9): 1250-1255.
    [15] 朱宇璇, 彭博, 李国梁, 等. 行波磁场对Cu-Ni-Si-Mg合金组织和性能的影响[J]. 铸造技术, 2024, 45(1): 37-43.
    [16]

    JIE J C, YUE S P, LIU J, et al. Revealing the mechanisms for the nucleation and formation of equiaxed grains in commercial purity aluminum by fluid-solid coupling induced by a pulsed magnetic field[J]. Acta Materialia, 2021, 208: 116747.

计量
  • 文章访问数:  8
  • HTML全文浏览量:  3
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-24

目录

    /

    返回文章
    返回