Effect of Electromagnetic Stirring Process Parameters on Microstructures and Properties of Fe-25Mn-9Al-8Ni-1C-0.2Ti Low-density Iron-based Alloy
-
摘要: 采用真空电弧熔炼法制备了由奥氏体相和铁素体相组成的Fe-25Mn-9Al-8Ni-1C-0.2Ti低密度铁基合金,探讨了电磁搅拌电流和电磁搅拌时间对合金微观组织及性能的影响。结果表明:搅拌电流或搅拌时间的变化对合金抗拉强度的影响很小,抗拉强度稳定在(804.20±19.80)~(852.94±19.90) MPa;随着搅拌电流的增大或搅拌时间的增加,合金的伸长率均显著增大,最大值为(27.73±0.68)%;合金室温下的断裂形式以韧性断裂为主。Abstract: Fe-25Mn-9Al-8Ni-1C-0.2Ti low-density iron-base alloys, primarily composed of ferrite and austenite, are prepared using vacuum arc melting, and the influences of electromagnetic stirring current and stirring time on the microstructures and properties of the smelted alloys are investigated. It is concluded that the effects of electromagnetic stirring current and stirring time on the tensile strength of the alloy can be ignored, which ranges between(804.20±19.80)~(852.94±19.90) MPa. As the electromagnetic stirring current increases and the stirring time extends, the elongation of the alloy gradually rises to the maximum value of (27.73±0.68)%. The fracture pattern of the allot at room temperature is mainly ductile fracture.
-
-
[1] OTANI L B, VIDILLI A L, ZEPON G, et al. The effect of C on the mechanical behavior of a low-density high-Mn steel[J]. Journal of Materials Research, 2024, 39(1): 77-89.
[2] 曹鹏飞. Fe-Mn-Al-C双相轻质钢动态变形条件下微观组织演变及变形机制研究[D].太原: 中北大学, 2024. [3] SONG H, YOO J, KIM S H, et al. Novel ultra-high-strength Cu-containing medium-Mn duplex lightweight steels[J]. Acta Materialia, 2017, 135: 215-225.
[4] 李欣,马涛,曹玉鹏,等.Fe-Mn-Al-C系轻质钢的研究进展[J].热加工工艺,2018,47(6):15-18. [5] 陈兴品, 李文佳, 任平, 等. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J].金属学报, 2019,55(8): 951-957. [6] 王岩,郑浩,魏瑛康,等.Fe-Mn-Al-C轻质高强钢析出相研究进展[J].钢铁研究学报,2024,36(4):407-423. [7] MOON J, PARK S J, JANG J H, et al. Investigations of the microstructure evolution and tensile deformation behavior of austenitic Fe-Mn-Al-C lightweight steels and the effect of Mo addition[J].Acta Materialia, 2018, 147: 226-235.
[8] XING J, WEI Y H, HOU L F. An overview of the effects of alloying elements on the properties of lightweight Fe-(15-35)Mn-(5-12)Al-(0.3-1.2)C steel[J]. JOM, 2018,70(6): 929-937.
[9] 马涛,李慧蓉,高建新,等.合金元素及时效处理对Fe-Mn-Al-C低密度钢中κ-碳化物的影响特性综述[J].材料导报,2020,34(11):11153-11161. [10] 宋宏伟,李慧蓉,高建新,等.合金元素对Fe-Mn-Al-C系轻质钢组织和性能影响的研究现状[J].热加工工艺,2019,48(6):19-22+25. [11] ISHIDA K, OHTANI H, SATOH N, et al. Phase equilibria in Fe-Mn-Al-C alloys[J]. ISIJ International, 1990, 30(8): 680-686.
[12] XU Y T, LI W, ZUO X W, et al. Nanoprecipitation-suppressed ferrite transformation(γ→α) during tempering in a medium-manganese steel[J]. Scripta Materialia, 2019, 162: 391-396.
[13] 郭爱民,郭云侠,侯清宇,等.电渣重熔Fe-Mn-Al-C钢的组织性能及变形机制[J].材料热处理学报,2021,42(11):84-95. [14] METAN V, EIGENFELD K, RÄBIGER D, et al. Grain size control in Al-Si alloys by grain refinement and electromagnetic stirring[J]. Journal of Alloys and Compounds, 2009, 487(1-2): 163-172.
[15] 石振华.电磁搅拌对Fe/Cu双金属组织及性能影响研究[D].太原:中北大学,2024. [16] JIN W Z, ZHANG W, LI T J, et al. Study of the grain refinement technology by electromagnetic stirring for IN100 superalloy vacuum investment casting[J]. Advanced Materials Research, 2011, 189-193: 3789-3794.
[17] ANIKEEV V N, DOKUKIN M Y. Electromagnetic stirring in an electric arc metal melt[J]. Russian Metallurgy (Metally), 2020, 2020(12): 1372-1375.
[18] ZHANG Y, ZHANG W, ZENG L, et al. Segregation behavior and precipitated phases of super-austenitic stainless steel influenced by electromagnetic stirring[J]. Materials Today Communications, 2022, 31: 103675.
[19] 田可可.新型轻质耐疲劳铁基合金的设计及组织性能研究[D].西安:西安工业大学,2022. [20] GUO F, BAI Y P, TIAN K K, et al. Investigation of Ti content on thermal fatigue behavior of Fe-25Mn-9Al-8Ni-1C alloy[J]. Journal of Materials Enginee-ring and Performance, 2024, 33(12): 6175-6192.
计量
- 文章访问数: 9
- HTML全文浏览量: 0
- PDF下载量: 3