Magnetic-Field-Assisted Preparation of Serrated Grain Boundaries of Semi-solid Al-Cu Hypoeutectic Alloy
-
摘要: 金属材料中的锯齿形晶界可显著提高材料的蠕变性能,并减缓应力腐蚀开裂。通过在合金半固态热处理过程中施加外加磁场,即可在无预变形或高温原位变形的条件下,形成形状可控的微米级锯齿形晶界。结果表明,在无预变形或原位变形的情况下,外加磁场促使Al-Cu亚共晶合金在半固态热处理过程中出现锯齿形晶界。随着磁感应强度的增加,锯齿形晶界的数量占比显著上升至61.06%。在外加磁场作用下,锯齿形晶界的形成机制可能归因于位错辅助的晶界迁移以及液膜迁移。这种晶界形态的变化为铝基材料力学性能的提高提供了新的可能。Abstract: The serrated grain boundaries can promote the creep property and retard the corrosion cracking of material. Therefore, we apply magnetic field in the process of semi-solid heat treatment to form the shape-controllable micron-scale serrated grain boundaries without pre-deformation or high-temperature in-situ deformation. Experimental results indicate that without pre-deformation nor high-temperature in-situ deformation, the application of an external magnetic field successfully enables the formation of shape-controllable micron-scale serrated grain boundaries. As the external magnetic induction intensity increases, the proportion of serrated grain boundaries progressively increases to 61.06%. Under the influence of the external magnetic field, the formation of serrated grain boundaries is closely related to the dislocation-assisted grain boundary migration and quasi-liquid film migration. The transformation of grain boundary morphology makes the development of aluminum-based materials with excellent mechanical properties possible.
-
-
[1] DANFLOU H L, MARTY M, WALDER A. Formation of serrated grain boundaries and their effect on the mechanical properties in a P/M nickel base superalloy[C]//Superalloys 1992(Seventh International Symposium). TMS, 1992: 63-72.
[2] TANG Y T, WILKINSON A J, REED R C. Grain boundary serration in nickel-based superalloy inconel 600: generation and effects on mechanical behavior[J]. Metallurgical and Materials Transactions A, 2018, 49(9): 4324-4342.
[3] KIM H P, CHOI M J, KIM S W, et al. Effect of serrated grain boundary on stress corrosion cracking of Alloy 600[J]. Nuclear Engineering and Technology, 2018, 50(7): 1131-1137.
[4] WU S W, YANG T, CAO B X, et al. Multicomponent Ni-rich high-entropy alloy toughened with irregular-shaped precipitates and serrated grain boundaries[J]. Scripta Materialia, 2021, 204: 114066.
[5] NIE Y, CHANG Y T, CHARPAGNE M A. Functionally graded stainless steels with tailored grain boundary serration[J]. Scripta Materialia, 2023, 237: 115714.
[6] 杨万鹏, 胡本芙, 刘国权, 等. 高性能镍基粉末高温合金中γ’相形态致锯齿晶界形成机理研究[J]. 材料工程, 2015, 43(6): 7-13. [7] 孟南. 锯齿状晶界对Incone1718合金蠕变抗力的影响[J]. 金属材料研究, 2015, 41(1): 1. [8] BECK P A, SPERRY P R. Strain induced grain boundary migration in high purity aluminum[J]. Journal of Applied Physics, 1950, 21(2): 150-152.
[9] BELLIER S P, DOHERTY R D. The structure of deformed aluminium and its recrystallization—investigations with transmission Kossel diffraction[J]. Acta Metallurgica, 1977, 25(5): 521-538.
[10] LENS A, MAURICE C, DRIVER J H. Grain boundary mobilities during recrystallization of Al-Mn alloys as measured by in situ annealing experiments[J]. Materials Science and Engineering: A, 2005, 403(1-2): 144-153.
[11] HUMPHREYS F J, HATHERLY M. Grain growth following recrystallization[M]//ROLLETT A, HUMPHREYS F J, FOHRER G S, et al. Recrystallization and Related Annealing Phenomena. Amsterdam: Elsevier, 2004: 333-378.
[12] KASSNER M E, MCMAHON M E. The dislocation microstructure of aluminum deformed to very large steady-state creep strains[J]. Metallurgical Transactions A, 1987, 18(5): 835-846.
[13] DRURY R. Mg during of microstructure temperature in[J]. Acta Metallurgica, 1986, 34(1): 2259-2271.
[14] TANG Y T, KARAMCHED P, LIU J L, et al. Grain boundary serration in nickel alloy inconel 600: quantification and mechanisms[J]. Acta Materialia, 2019, 181: 352-366.
[15] MCQUEEN H J, MYSHLYAEV M M, MWEMBELA A. Microstructural evolution and strength in hot working of ZK60 and other Mg alloys[J]. Canadian Metallurgical Quarterly, 2003, 42(1): 97-112.
[16] NISHIKAWA O, SAIKI K, WENK H R. Intra-granular strains and grain boundary morphologies of dynamically recrystallized quartz aggregates in a mylonite[J]. Journal of Structural Geology, 2004, 26(1): 127-141.
[17] SIEMES H, KLINGENBERG B, RYBACKI E, et al. Glide systems of hematite single crystals in deformation experiments[J]. Ore Geology Reviews, 2008, 33(3-4): 255-279.
[18] MARTORANO M A, SANDIM H R Z, FORTES M A, et al. Observations of grain boundary protrusions in static recrystallization of high-purity bcc metals[J]. Scripta Materialia, 2007, 56(10): 903-906.
[19] HUANG C L, WANG J, SHUAI S S, et al. The effect of static magnetic field on solid/liquid interfacial energies of Al-Cu studied by dihedral angle method[J]. Metallurgical and Materials Transactions A, 2023, 54(9): 3400-3411.
[20] ZHANG Y D, VINCENT G, HE C S, et al. The effects of a high magnetic field on microstructure, grain boundary structures and texture in a medium carbon steel under different cooling rates[J]. Materials Science Forum, 2005, 495-497: 1261-1266.
[21] ZHONG H, REN Z, LI C, et al. Texture formation and grain boundary characteristic of Al-4.5Cu alloys directionally solidified under high magnetic field[J]. Acta Metallurgica Sinica, 2015, 51(4): 473-482.
[22] MOLODOV D A, GOTTSTEIN G, HERINGHAUS F, et al. Motion of planar grain boundaries in bismuthbicrystals driven by a magnetic field[J]. Scripta Materialia, 1997, 37(8): 1207-1213.
[23] SHEIKH-ALI A D, MOLODOV D A, GARMESTANI H. Boundary migration in Zn bicrystal induced by a high magnetic field[J]. 2003, 82(18): 3005-3007.
[24] KUO M, FOURNELLE R A. Diffusion induced grain boundary migration (DIGM) and liquid film migration (LFM) in an Al-2.07wt% Cu alloy[J]. Acta Metallurgica et Materialia, 1991, 39(11): 2835-2845.
[25] MANSON-WHITTON E D, STONE I C, JONES J R, et al. Isothermal grain coarsening of spray formed alloys in the semi-solid state[J]. Acta Materialia, 2002, 50(10): 2517-2535.
[26] TERZI S, SALVO L, SUÉRY M, et al. In situ X-ray microtomography characterization of the entrapped liquid formed during partial remelting of a cold-rolled Al-8wt.% Cu alloy[J]. Scripta Materialia, 2009, 60(8): 671-674.
[27] WANG Y F, ZHAO S D, ZHAO X Z. Microstructure of semi-solid 6063 alloy fabricated by radial forging combined with unidirectional compression recrystallization and partial melting process[J]. MATEC Web of Conferences, 2017, 136: 01003.
[28] NAKAMICHI S, TSUREKAWA S, MORIZONO Y, et al. Diffusion of carbon and titanium in γ-iron in a magnetic field and a magnetic field gradient[J]. Journal of Materials Science, 2005, 40(12): 3191-3198.
[29] WATANABE T, TSUREKAWA S, ZHAO X, et al. Grain boundary engineering by magnetic field application[J]. Scripta Materialia, 2006, 54(6): 969-975.
[30] YUAN Y, WANG Q, IWAI K, et al. Isothermal heat treatments of an Al-4.8mass%Cu alloy under high magnetic fields[J]. Journal of Alloys and Compounds, 2013, 560: 127-131.
[31] MULLINS W W. Magnetically induced grain-boundary motion in bismuth[J]. Acta Metallurgica, 1956, 4(4): 421-432.
[32] MONDOLFO L F. Aluminum alloys: structure and properties[M]. Boston: Butterworths, 1976.
[33] 王晖. 强磁场对合金中析出相凝固行为的影响[D]. 上海: 上海大学, 2003. [34] 王强, 赫冀成. 强磁场材料科学[M]. 北京: 科学出版社, 2014. [35] GOLOVIN Y I. Magnetoplastic effects in solids[J]. Physics of the Solid State, 2004, 46(5): 789-824.
[36] MORGUNOV R B. Spin micromechanics in the phys-ics of plasticity[J]. Physics-Uspekhi, 2004, 47(2): 125-147.
[37] MARTORANO M A, FORTES M A, PADILHA A F. The growth of protrusions at the boundary of a recrystallized grain[J]. Acta Materialia, 2006, 54(10): 2769-2776.
[38] CLARKE D R. On the equilibrium thickness of intergranular glass phases in ceramic materials[J]. Journal of the American Ceramic Society, 1987, 70(1): 15-22.
[39] HUANG C L, SHUAI S S, WANG P C, et al. The effect of static magnetic field on solid-liquid interfacial free energy of Al-Cu alloy system[J]. Scripta Materialia, 2020, 187: 232-236.
[40] KIRKALDY J S. Liquid film migration as a broken symmetry due to an unbalanced anisotropy of surface tension[J]. Acta Materialia, 1998, 46(14): 5127-5133.
计量
- 文章访问数: 25
- HTML全文浏览量: 2
- PDF下载量: 6