Effect of Electromagnetic Pulse Waveform on Solidification Process of ZL114A Aluminum Alloys
-
摘要: 在脉冲电磁场铸造过程中,由于线圈电感效应会引起脉冲波形的畸变与失真,实际波形引起的电磁效应对铝合金凝固物理场的影响至关重要。本研究建立了电磁场有限元数学模型,结合实验数据,探明了脉冲电流峰值、频率、占空比对磁通密度、电磁力时间和空间分布特性的影响,进而分析其对金属熔体液面波动及凝固组织的作用规律。结果表明,当脉冲电流峰值为100 A、频率为20 Hz、占空比为20%时,线圈有效脉冲加载电流最高、磁通密度最大、磁场分布均匀。此时,电磁力径向分量引起的磁压力对金属液面波动起主导驱动和控制作用,液面形成清晰的波动,ZL114A铝合金中初生α-Al相晶粒得到细化,并形成了细小、分散的二次相;当频率增加至80 Hz后,液面波动振幅减小,合金中的初生Si相粗化和偏聚;当占空比增加至80%后,液面波动振幅显著增加,剧烈的熔体振荡不利于合金凝固组织细化。Abstract: In the cause of pulsed electromagnetic casting, the inductance effect of the coil (Lenz's law) causes distortion and deformation of the pulse waveform, and the electromagnetic effect induced by the actual waveform is crucial for the solidification field of aluminum alloys. In this study, a finite element mathematical model of the electromagnetic field is established in combination with the experimental research to investigate the effects of pulse intensity, frequency, and duty cycle on the filed density and the spatial and temporal distribution characteristics of magnetic flux density and electromagnetic force. Furthermore, the influence of those factors on the melt surface fluctuations and solidification structures are analyzed. Results show that when the peak current is 100 A, the frequency is 20 Hz, and the duty cycle is 20%, the coil's effective pulse loading current and the magnetic flux density are at their maximums, and the magnetic field is evenly distributed. At this point, the magnetic pressure caused by the radial electromagnetic force plays a dominant role in driving and controlling the melt surface fluctuations, leading to clear waves on the liquid surface. The α-Al phase in the ZL114A alloy is refined, and the fine and dispersed secondary phase is formed. As the frequency increases to 80 Hz, the amplitude of surface fluctuations decreases, and the primary Si phase becomes coarser and segregated. When the duty cycle increases to 80%, the amplitude of the surface fluctuations increases significantly, the violent melt oscillation is unfavorable for the refinement of the solidified structure.
-
-
[1] ZHANG J H, GUO W T, BAI Q W, et al. Effect of rare earth Ce and Y on microstructure and viscosity of ZL114A alloy[J]. Journal of Alloys and Compounds, 2024, 1004: 175755.
[2] 崔建忠, 巴启先,班春燕,等. 轻合金电磁冶金[M].沈阳: 东北大学出版社, 2005: 160-170. [3] 宋成猛, 侯东锋, 王健, 等. 浅述压铸铝合金行业现状及发展趋势[J]. 特种铸造及有色合金, 2024,44(6): 848-852. [4] 李跃, 王子铭, 孙本辰, 等. 电磁冶金对凝固组织特性影响的研究进展[J]. 材料热处理学报, 2023,44(12): 16-34. [5] 黄宇欣, 潘浩, 邢淑清, 等. 脉冲磁场固溶处理对A356铝合金组织和性能的影响[J]. 金属热处理, 2023,48(11): 168-172. [6] 于文霞, 邢淑清, 蒙耀鑫, 等. 加磁场时效工艺对7A04铝合金析出物的影响[J]. 金属热处理, 2019,44(5): 182-186. [7] ZHAO Z L, ZHANG R, LIU L, et al. Unidirectionally solidified Al-Cu eutectic alloy under high intensity pulsed magnetic field[J]. Materials Science Forum, 2005, 475-479: 2619-2622.
[8] 潘浩, 杨帆, 宫美娜, 等. 低强度脉冲磁场下时效温度和时间对A356铝合金组织和性能的影响[J]. 机械工程材料, 2023,47(8): 29-33. [9] WANG B, YANG Y S, SUN M L. Microstructure refinement of AZ31 alloy solidified with pulsed magnetic field[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(9): 1685-1690.
[10] 师亚洲, 逯广平, 高翌, 等. 脉冲磁场处理对7075铝合金性能及组织的影响[J]. 金属热处理, 2021,46(9): 159-164. [11] 贾鹏, 王恩刚, 鲁辉, 等. 电磁场对Inconel 625合金凝固组织及力学性能的影响[J]. 金属学报, 2013,49(12): 1573-1580. [12] LI H, LIU S C, JIE J C, et al. Effect of pulsed magnetic field on the grain refinement and mechanical pro-perties of 6063 aluminum alloy by direct chill casting[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(9): 3033-3042.
[13] 白庆伟, 麻永林, 邢淑清, 等. 可控电磁能(CEME)时效处理下Al-Zn-Mg-Cu合金的析出及强化机理研究[J]. 材料导报, 2021,35(20): 20143-20148. [14] ZHANG L, LI W, YAO J P. Microstructures and thermal stability of the semi-solid 2024 aluminum alloy prepared using the pulsed magnetic field process: Effects of technological parameters[J]. Journal of Alloys and Compounds, 2013, 554: 156-161.
[15] ZHANG K L, LI Y J, YANG Y S. Influence of the low voltage pulsed magnetic field on the columnar-to-equiaxed transition during directional solidification of superalloy K4169[J]. Journal of Materials Science & Technology, 2020, 48: 9-17.
[16] GAO Y L, LI Q S, GONG Y Y, et al. Comparative study on structural transformation of low-melting pure Al and high-melting stainless steel under external pulsed magnetic field[J]. Materials Letters, 2007, 61(18): 4011-4014.
[17] LIANG Z, BAI Q W, TIAN Y C, et al. Numerical simulation of the casting process of an AZ91D magnesium alloy under a rotating-pulsed combined electromagnetic field[J]. Journal of Mining and Metallurgy, Section B: Metallurgy, 2024, 60(2): 191-204.
[18] 贾永辉. 镁合金差相脉冲磁场半连铸工艺数值模拟研究[D]. 沈阳: 东北大学, 2018. [19] DUAN W C, YIN S Q, LIU W H, et al. Numerical and experimental studies on solidification of AZ80 magnesium alloy under out-of-phase pulsed magnetic field[J]. Journal of Magnesium and Alloys, 2021, 9(1): 166-182.
计量
- 文章访问数: 12
- HTML全文浏览量: 8
- PDF下载量: 7